123456789101112131415 |
- Steps to validate transcendental functions:
- 1) Add a file 'umath-validation-set-<ufuncname>.txt', where ufuncname is name of
- the function in NumPy you want to validate
- 2) The file should contain 4 columns: dtype,input,expected output,ulperror
- a. dtype: one of np.float16, np.float32, np.float64
- b. input: floating point input to ufunc in hex. Example: 0x414570a4
- represents 12.340000152587890625
- c. expected output: floating point output for the corresponding input in hex.
- This should be computed using a high(er) precision library and then rounded to
- same format as the input.
- d. ulperror: expected maximum ulp error of the function. This
- should be same across all rows of the same dtype. Otherwise, the function is
- tested for the maximum ulp error among all entries of that dtype.
- 3) Add file umath-validation-set-<ufuncname>.txt to the test file test_umath_accuracy.py
- which will then validate your ufunc.
|