_searching_functions.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. from __future__ import annotations
  2. from ._array_object import Array
  3. from ._dtypes import _result_type
  4. from typing import Optional, Tuple
  5. import numpy as np
  6. def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
  7. """
  8. Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`.
  9. See its docstring for more information.
  10. """
  11. return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims)))
  12. def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
  13. """
  14. Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`.
  15. See its docstring for more information.
  16. """
  17. return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims)))
  18. def nonzero(x: Array, /) -> Tuple[Array, ...]:
  19. """
  20. Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`.
  21. See its docstring for more information.
  22. """
  23. return tuple(Array._new(i) for i in np.nonzero(x._array))
  24. def where(condition: Array, x1: Array, x2: Array, /) -> Array:
  25. """
  26. Array API compatible wrapper for :py:func:`np.where <numpy.where>`.
  27. See its docstring for more information.
  28. """
  29. # Call result type here just to raise on disallowed type combinations
  30. _result_type(x1.dtype, x2.dtype)
  31. x1, x2 = Array._normalize_two_args(x1, x2)
  32. return Array._new(np.where(condition._array, x1._array, x2._array))