123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416 |
- import builtins
- import os
- import sys
- import mmap
- import ctypes as ct
- import array as _array
- import datetime as dt
- import enum
- from abc import abstractmethod
- from types import TracebackType, MappingProxyType
- from contextlib import ContextDecorator
- from contextlib import contextmanager
- if sys.version_info >= (3, 9):
- from types import GenericAlias
- from numpy._pytesttester import PytestTester
- from numpy.core._internal import _ctypes
- from numpy._typing import (
- # Arrays
- ArrayLike,
- NDArray,
- _SupportsArray,
- _NestedSequence,
- _FiniteNestedSequence,
- _SupportsArray,
- _ArrayLikeBool_co,
- _ArrayLikeUInt_co,
- _ArrayLikeInt_co,
- _ArrayLikeFloat_co,
- _ArrayLikeComplex_co,
- _ArrayLikeNumber_co,
- _ArrayLikeTD64_co,
- _ArrayLikeDT64_co,
- _ArrayLikeObject_co,
- _ArrayLikeStr_co,
- _ArrayLikeBytes_co,
- _ArrayLikeUnknown,
- _UnknownType,
- # DTypes
- DTypeLike,
- _DTypeLike,
- _DTypeLikeVoid,
- _SupportsDType,
- _VoidDTypeLike,
- # Shapes
- _Shape,
- _ShapeLike,
- # Scalars
- _CharLike_co,
- _BoolLike_co,
- _IntLike_co,
- _FloatLike_co,
- _ComplexLike_co,
- _TD64Like_co,
- _NumberLike_co,
- _ScalarLike_co,
- # `number` precision
- NBitBase,
- _256Bit,
- _128Bit,
- _96Bit,
- _80Bit,
- _64Bit,
- _32Bit,
- _16Bit,
- _8Bit,
- _NBitByte,
- _NBitShort,
- _NBitIntC,
- _NBitIntP,
- _NBitInt,
- _NBitLongLong,
- _NBitHalf,
- _NBitSingle,
- _NBitDouble,
- _NBitLongDouble,
- # Character codes
- _BoolCodes,
- _UInt8Codes,
- _UInt16Codes,
- _UInt32Codes,
- _UInt64Codes,
- _Int8Codes,
- _Int16Codes,
- _Int32Codes,
- _Int64Codes,
- _Float16Codes,
- _Float32Codes,
- _Float64Codes,
- _Complex64Codes,
- _Complex128Codes,
- _ByteCodes,
- _ShortCodes,
- _IntCCodes,
- _IntPCodes,
- _IntCodes,
- _LongLongCodes,
- _UByteCodes,
- _UShortCodes,
- _UIntCCodes,
- _UIntPCodes,
- _UIntCodes,
- _ULongLongCodes,
- _HalfCodes,
- _SingleCodes,
- _DoubleCodes,
- _LongDoubleCodes,
- _CSingleCodes,
- _CDoubleCodes,
- _CLongDoubleCodes,
- _DT64Codes,
- _TD64Codes,
- _StrCodes,
- _BytesCodes,
- _VoidCodes,
- _ObjectCodes,
- # Ufuncs
- _UFunc_Nin1_Nout1,
- _UFunc_Nin2_Nout1,
- _UFunc_Nin1_Nout2,
- _UFunc_Nin2_Nout2,
- _GUFunc_Nin2_Nout1,
- )
- from numpy._typing._callable import (
- _BoolOp,
- _BoolBitOp,
- _BoolSub,
- _BoolTrueDiv,
- _BoolMod,
- _BoolDivMod,
- _TD64Div,
- _IntTrueDiv,
- _UnsignedIntOp,
- _UnsignedIntBitOp,
- _UnsignedIntMod,
- _UnsignedIntDivMod,
- _SignedIntOp,
- _SignedIntBitOp,
- _SignedIntMod,
- _SignedIntDivMod,
- _FloatOp,
- _FloatMod,
- _FloatDivMod,
- _ComplexOp,
- _NumberOp,
- _ComparisonOp,
- )
- # NOTE: Numpy's mypy plugin is used for removing the types unavailable
- # to the specific platform
- from numpy._typing._extended_precision import (
- uint128 as uint128,
- uint256 as uint256,
- int128 as int128,
- int256 as int256,
- float80 as float80,
- float96 as float96,
- float128 as float128,
- float256 as float256,
- complex160 as complex160,
- complex192 as complex192,
- complex256 as complex256,
- complex512 as complex512,
- )
- from collections.abc import (
- Callable,
- Container,
- Iterable,
- Iterator,
- Mapping,
- Sequence,
- Sized,
- )
- from typing import (
- Literal as L,
- Any,
- Generator,
- Generic,
- IO,
- NoReturn,
- overload,
- SupportsComplex,
- SupportsFloat,
- SupportsInt,
- TypeVar,
- Union,
- Protocol,
- SupportsIndex,
- Final,
- final,
- ClassVar,
- )
- # Ensures that the stubs are picked up
- from numpy import (
- ctypeslib as ctypeslib,
- fft as fft,
- lib as lib,
- linalg as linalg,
- ma as ma,
- polynomial as polynomial,
- random as random,
- testing as testing,
- version as version,
- )
- from numpy.core import defchararray, records
- char = defchararray
- rec = records
- from numpy.core.function_base import (
- linspace as linspace,
- logspace as logspace,
- geomspace as geomspace,
- )
- from numpy.core.fromnumeric import (
- take as take,
- reshape as reshape,
- choose as choose,
- repeat as repeat,
- put as put,
- swapaxes as swapaxes,
- transpose as transpose,
- partition as partition,
- argpartition as argpartition,
- sort as sort,
- argsort as argsort,
- argmax as argmax,
- argmin as argmin,
- searchsorted as searchsorted,
- resize as resize,
- squeeze as squeeze,
- diagonal as diagonal,
- trace as trace,
- ravel as ravel,
- nonzero as nonzero,
- shape as shape,
- compress as compress,
- clip as clip,
- sum as sum,
- all as all,
- any as any,
- cumsum as cumsum,
- ptp as ptp,
- amax as amax,
- amin as amin,
- prod as prod,
- cumprod as cumprod,
- ndim as ndim,
- size as size,
- around as around,
- mean as mean,
- std as std,
- var as var,
- )
- from numpy.core._asarray import (
- require as require,
- )
- from numpy.core._type_aliases import (
- sctypes as sctypes,
- sctypeDict as sctypeDict,
- )
- from numpy.core._ufunc_config import (
- seterr as seterr,
- geterr as geterr,
- setbufsize as setbufsize,
- getbufsize as getbufsize,
- seterrcall as seterrcall,
- geterrcall as geterrcall,
- _ErrKind,
- _ErrFunc,
- _ErrDictOptional,
- )
- from numpy.core.arrayprint import (
- set_printoptions as set_printoptions,
- get_printoptions as get_printoptions,
- array2string as array2string,
- format_float_scientific as format_float_scientific,
- format_float_positional as format_float_positional,
- array_repr as array_repr,
- array_str as array_str,
- set_string_function as set_string_function,
- printoptions as printoptions,
- )
- from numpy.core.einsumfunc import (
- einsum as einsum,
- einsum_path as einsum_path,
- )
- from numpy.core.multiarray import (
- ALLOW_THREADS as ALLOW_THREADS,
- BUFSIZE as BUFSIZE,
- CLIP as CLIP,
- MAXDIMS as MAXDIMS,
- MAY_SHARE_BOUNDS as MAY_SHARE_BOUNDS,
- MAY_SHARE_EXACT as MAY_SHARE_EXACT,
- RAISE as RAISE,
- WRAP as WRAP,
- tracemalloc_domain as tracemalloc_domain,
- array as array,
- empty_like as empty_like,
- empty as empty,
- zeros as zeros,
- concatenate as concatenate,
- inner as inner,
- where as where,
- lexsort as lexsort,
- can_cast as can_cast,
- min_scalar_type as min_scalar_type,
- result_type as result_type,
- dot as dot,
- vdot as vdot,
- bincount as bincount,
- copyto as copyto,
- putmask as putmask,
- packbits as packbits,
- unpackbits as unpackbits,
- shares_memory as shares_memory,
- may_share_memory as may_share_memory,
- asarray as asarray,
- asanyarray as asanyarray,
- ascontiguousarray as ascontiguousarray,
- asfortranarray as asfortranarray,
- arange as arange,
- busday_count as busday_count,
- busday_offset as busday_offset,
- compare_chararrays as compare_chararrays,
- datetime_as_string as datetime_as_string,
- datetime_data as datetime_data,
- frombuffer as frombuffer,
- fromfile as fromfile,
- fromiter as fromiter,
- is_busday as is_busday,
- promote_types as promote_types,
- seterrobj as seterrobj,
- geterrobj as geterrobj,
- fromstring as fromstring,
- frompyfunc as frompyfunc,
- nested_iters as nested_iters,
- flagsobj,
- )
- from numpy.core.numeric import (
- zeros_like as zeros_like,
- ones as ones,
- ones_like as ones_like,
- full as full,
- full_like as full_like,
- count_nonzero as count_nonzero,
- isfortran as isfortran,
- argwhere as argwhere,
- flatnonzero as flatnonzero,
- correlate as correlate,
- convolve as convolve,
- outer as outer,
- tensordot as tensordot,
- roll as roll,
- rollaxis as rollaxis,
- moveaxis as moveaxis,
- cross as cross,
- indices as indices,
- fromfunction as fromfunction,
- isscalar as isscalar,
- binary_repr as binary_repr,
- base_repr as base_repr,
- identity as identity,
- allclose as allclose,
- isclose as isclose,
- array_equal as array_equal,
- array_equiv as array_equiv,
- )
- from numpy.core.numerictypes import (
- maximum_sctype as maximum_sctype,
- issctype as issctype,
- obj2sctype as obj2sctype,
- issubclass_ as issubclass_,
- issubsctype as issubsctype,
- issubdtype as issubdtype,
- sctype2char as sctype2char,
- find_common_type as find_common_type,
- nbytes as nbytes,
- cast as cast,
- ScalarType as ScalarType,
- typecodes as typecodes,
- )
- from numpy.core.shape_base import (
- atleast_1d as atleast_1d,
- atleast_2d as atleast_2d,
- atleast_3d as atleast_3d,
- block as block,
- hstack as hstack,
- stack as stack,
- vstack as vstack,
- )
- from numpy.lib import (
- emath as emath,
- )
- from numpy.lib.arraypad import (
- pad as pad,
- )
- from numpy.lib.arraysetops import (
- ediff1d as ediff1d,
- intersect1d as intersect1d,
- setxor1d as setxor1d,
- union1d as union1d,
- setdiff1d as setdiff1d,
- unique as unique,
- in1d as in1d,
- isin as isin,
- )
- from numpy.lib.arrayterator import (
- Arrayterator as Arrayterator,
- )
- from numpy.lib.function_base import (
- select as select,
- piecewise as piecewise,
- trim_zeros as trim_zeros,
- copy as copy,
- iterable as iterable,
- percentile as percentile,
- diff as diff,
- gradient as gradient,
- angle as angle,
- unwrap as unwrap,
- sort_complex as sort_complex,
- disp as disp,
- flip as flip,
- rot90 as rot90,
- extract as extract,
- place as place,
- asarray_chkfinite as asarray_chkfinite,
- average as average,
- bincount as bincount,
- digitize as digitize,
- cov as cov,
- corrcoef as corrcoef,
- median as median,
- sinc as sinc,
- hamming as hamming,
- hanning as hanning,
- bartlett as bartlett,
- blackman as blackman,
- kaiser as kaiser,
- trapz as trapz,
- i0 as i0,
- add_newdoc as add_newdoc,
- add_docstring as add_docstring,
- meshgrid as meshgrid,
- delete as delete,
- insert as insert,
- append as append,
- interp as interp,
- add_newdoc_ufunc as add_newdoc_ufunc,
- quantile as quantile,
- )
- from numpy.lib.histograms import (
- histogram_bin_edges as histogram_bin_edges,
- histogram as histogram,
- histogramdd as histogramdd,
- )
- from numpy.lib.index_tricks import (
- ravel_multi_index as ravel_multi_index,
- unravel_index as unravel_index,
- mgrid as mgrid,
- ogrid as ogrid,
- r_ as r_,
- c_ as c_,
- s_ as s_,
- index_exp as index_exp,
- ix_ as ix_,
- fill_diagonal as fill_diagonal,
- diag_indices as diag_indices,
- diag_indices_from as diag_indices_from,
- )
- from numpy.lib.nanfunctions import (
- nansum as nansum,
- nanmax as nanmax,
- nanmin as nanmin,
- nanargmax as nanargmax,
- nanargmin as nanargmin,
- nanmean as nanmean,
- nanmedian as nanmedian,
- nanpercentile as nanpercentile,
- nanvar as nanvar,
- nanstd as nanstd,
- nanprod as nanprod,
- nancumsum as nancumsum,
- nancumprod as nancumprod,
- nanquantile as nanquantile,
- )
- from numpy.lib.npyio import (
- savetxt as savetxt,
- loadtxt as loadtxt,
- genfromtxt as genfromtxt,
- recfromtxt as recfromtxt,
- recfromcsv as recfromcsv,
- load as load,
- save as save,
- savez as savez,
- savez_compressed as savez_compressed,
- packbits as packbits,
- unpackbits as unpackbits,
- fromregex as fromregex,
- )
- from numpy.lib.polynomial import (
- poly as poly,
- roots as roots,
- polyint as polyint,
- polyder as polyder,
- polyadd as polyadd,
- polysub as polysub,
- polymul as polymul,
- polydiv as polydiv,
- polyval as polyval,
- polyfit as polyfit,
- )
- from numpy.lib.shape_base import (
- column_stack as column_stack,
- row_stack as row_stack,
- dstack as dstack,
- array_split as array_split,
- split as split,
- hsplit as hsplit,
- vsplit as vsplit,
- dsplit as dsplit,
- apply_over_axes as apply_over_axes,
- expand_dims as expand_dims,
- apply_along_axis as apply_along_axis,
- kron as kron,
- tile as tile,
- get_array_wrap as get_array_wrap,
- take_along_axis as take_along_axis,
- put_along_axis as put_along_axis,
- )
- from numpy.lib.stride_tricks import (
- broadcast_to as broadcast_to,
- broadcast_arrays as broadcast_arrays,
- broadcast_shapes as broadcast_shapes,
- )
- from numpy.lib.twodim_base import (
- diag as diag,
- diagflat as diagflat,
- eye as eye,
- fliplr as fliplr,
- flipud as flipud,
- tri as tri,
- triu as triu,
- tril as tril,
- vander as vander,
- histogram2d as histogram2d,
- mask_indices as mask_indices,
- tril_indices as tril_indices,
- tril_indices_from as tril_indices_from,
- triu_indices as triu_indices,
- triu_indices_from as triu_indices_from,
- )
- from numpy.lib.type_check import (
- mintypecode as mintypecode,
- asfarray as asfarray,
- real as real,
- imag as imag,
- iscomplex as iscomplex,
- isreal as isreal,
- iscomplexobj as iscomplexobj,
- isrealobj as isrealobj,
- nan_to_num as nan_to_num,
- real_if_close as real_if_close,
- typename as typename,
- common_type as common_type,
- )
- from numpy.lib.ufunclike import (
- fix as fix,
- isposinf as isposinf,
- isneginf as isneginf,
- )
- from numpy.lib.utils import (
- issubclass_ as issubclass_,
- issubsctype as issubsctype,
- issubdtype as issubdtype,
- deprecate as deprecate,
- deprecate_with_doc as deprecate_with_doc,
- get_include as get_include,
- info as info,
- source as source,
- who as who,
- lookfor as lookfor,
- byte_bounds as byte_bounds,
- safe_eval as safe_eval,
- show_runtime as show_runtime,
- )
- from numpy.matrixlib import (
- asmatrix as asmatrix,
- mat as mat,
- bmat as bmat,
- )
- _AnyStr_contra = TypeVar("_AnyStr_contra", str, bytes, contravariant=True)
- # Protocol for representing file-like-objects accepted
- # by `ndarray.tofile` and `fromfile`
- class _IOProtocol(Protocol):
- def flush(self) -> object: ...
- def fileno(self) -> int: ...
- def tell(self) -> SupportsIndex: ...
- def seek(self, offset: int, whence: int, /) -> object: ...
- # NOTE: `seek`, `write` and `flush` are technically only required
- # for `readwrite`/`write` modes
- class _MemMapIOProtocol(Protocol):
- def flush(self) -> object: ...
- def fileno(self) -> SupportsIndex: ...
- def tell(self) -> int: ...
- def seek(self, offset: int, whence: int, /) -> object: ...
- def write(self, s: bytes, /) -> object: ...
- @property
- def read(self) -> object: ...
- class _SupportsWrite(Protocol[_AnyStr_contra]):
- def write(self, s: _AnyStr_contra, /) -> object: ...
- __all__: list[str]
- __path__: list[str]
- __version__: str
- __git_version__: str
- test: PytestTester
- # TODO: Move placeholders to their respective module once
- # their annotations are properly implemented
- #
- # Placeholders for classes
- # Some of these are aliases; others are wrappers with an identical signature
- round = around
- round_ = around
- max = amax
- min = amin
- product = prod
- cumproduct = cumprod
- sometrue = any
- alltrue = all
- def show_config() -> None: ...
- _NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray)
- _DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic)
- _ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"]
- @final
- class dtype(Generic[_DTypeScalar_co]):
- names: None | tuple[builtins.str, ...]
- # Overload for subclass of generic
- @overload
- def __new__(
- cls,
- dtype: type[_DTypeScalar_co],
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[_DTypeScalar_co]: ...
- # Overloads for string aliases, Python types, and some assorted
- # other special cases. Order is sometimes important because of the
- # subtype relationships
- #
- # bool < int < float < complex < object
- #
- # so we have to make sure the overloads for the narrowest type is
- # first.
- # Builtin types
- @overload
- def __new__(cls, dtype: type[bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ...
- @overload
- def __new__(cls, dtype: type[int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ...
- @overload
- def __new__(cls, dtype: None | type[float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float_]: ...
- @overload
- def __new__(cls, dtype: type[complex], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex_]: ...
- @overload
- def __new__(cls, dtype: type[builtins.str], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ...
- @overload
- def __new__(cls, dtype: type[bytes], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ...
- # `unsignedinteger` string-based representations and ctypes
- @overload
- def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ...
- @overload
- def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ...
- @overload
- def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ...
- @overload
- def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ...
- @overload
- def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ...
- @overload
- def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ...
- @overload
- def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ...
- # NOTE: We're assuming here that `uint_ptr_t == size_t`,
- # an assumption that does not hold in rare cases (same for `ssize_t`)
- @overload
- def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ...
- @overload
- def __new__(cls, dtype: _UIntCodes | type[ct.c_ulong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint]: ...
- @overload
- def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ...
- # `signedinteger` string-based representations and ctypes
- @overload
- def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ...
- @overload
- def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ...
- @overload
- def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ...
- @overload
- def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ...
- @overload
- def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ...
- @overload
- def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ...
- @overload
- def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ...
- @overload
- def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ...
- @overload
- def __new__(cls, dtype: _IntCodes | type[ct.c_long], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ...
- @overload
- def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ...
- # `floating` string-based representations and ctypes
- @overload
- def __new__(cls, dtype: _Float16Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ...
- @overload
- def __new__(cls, dtype: _Float32Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ...
- @overload
- def __new__(cls, dtype: _Float64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ...
- @overload
- def __new__(cls, dtype: _HalfCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ...
- @overload
- def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ...
- @overload
- def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ...
- @overload
- def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ...
- # `complexfloating` string-based representations
- @overload
- def __new__(cls, dtype: _Complex64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ...
- @overload
- def __new__(cls, dtype: _Complex128Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ...
- @overload
- def __new__(cls, dtype: _CSingleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ...
- @overload
- def __new__(cls, dtype: _CDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ...
- @overload
- def __new__(cls, dtype: _CLongDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ...
- # Miscellaneous string-based representations and ctypes
- @overload
- def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ...
- @overload
- def __new__(cls, dtype: _TD64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ...
- @overload
- def __new__(cls, dtype: _DT64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ...
- @overload
- def __new__(cls, dtype: _StrCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ...
- @overload
- def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ...
- @overload
- def __new__(cls, dtype: _VoidCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ...
- @overload
- def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ...
- # dtype of a dtype is the same dtype
- @overload
- def __new__(
- cls,
- dtype: dtype[_DTypeScalar_co],
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[_DTypeScalar_co]: ...
- @overload
- def __new__(
- cls,
- dtype: _SupportsDType[dtype[_DTypeScalar_co]],
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[_DTypeScalar_co]: ...
- # Handle strings that can't be expressed as literals; i.e. s1, s2, ...
- @overload
- def __new__(
- cls,
- dtype: builtins.str,
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[Any]: ...
- # Catchall overload for void-likes
- @overload
- def __new__(
- cls,
- dtype: _VoidDTypeLike,
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[void]: ...
- # Catchall overload for object-likes
- @overload
- def __new__(
- cls,
- dtype: type[object],
- align: bool = ...,
- copy: bool = ...,
- metadata: dict[builtins.str, Any] = ...,
- ) -> dtype[object_]: ...
- if sys.version_info >= (3, 9):
- def __class_getitem__(self, item: Any) -> GenericAlias: ...
- @overload
- def __getitem__(self: dtype[void], key: list[builtins.str]) -> dtype[void]: ...
- @overload
- def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex) -> dtype[Any]: ...
- # NOTE: In the future 1-based multiplications will also yield `flexible` dtypes
- @overload
- def __mul__(self: _DType, value: L[1]) -> _DType: ...
- @overload
- def __mul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ...
- @overload
- def __mul__(self, value: SupportsIndex) -> dtype[void]: ...
- # NOTE: `__rmul__` seems to be broken when used in combination with
- # literals as of mypy 0.902. Set the return-type to `dtype[Any]` for
- # now for non-flexible dtypes.
- @overload
- def __rmul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ...
- @overload
- def __rmul__(self, value: SupportsIndex) -> dtype[Any]: ...
- def __gt__(self, other: DTypeLike) -> bool: ...
- def __ge__(self, other: DTypeLike) -> bool: ...
- def __lt__(self, other: DTypeLike) -> bool: ...
- def __le__(self, other: DTypeLike) -> bool: ...
- # Explicitly defined `__eq__` and `__ne__` to get around mypy's
- # `strict_equality` option; even though their signatures are
- # identical to their `object`-based counterpart
- def __eq__(self, other: Any) -> bool: ...
- def __ne__(self, other: Any) -> bool: ...
- @property
- def alignment(self) -> int: ...
- @property
- def base(self) -> dtype[Any]: ...
- @property
- def byteorder(self) -> builtins.str: ...
- @property
- def char(self) -> builtins.str: ...
- @property
- def descr(self) -> list[tuple[builtins.str, builtins.str] | tuple[builtins.str, builtins.str, _Shape]]: ...
- @property
- def fields(
- self,
- ) -> None | MappingProxyType[builtins.str, tuple[dtype[Any], int] | tuple[dtype[Any], int, Any]]: ...
- @property
- def flags(self) -> int: ...
- @property
- def hasobject(self) -> bool: ...
- @property
- def isbuiltin(self) -> int: ...
- @property
- def isnative(self) -> bool: ...
- @property
- def isalignedstruct(self) -> bool: ...
- @property
- def itemsize(self) -> int: ...
- @property
- def kind(self) -> builtins.str: ...
- @property
- def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ...
- @property
- def name(self) -> builtins.str: ...
- @property
- def num(self) -> int: ...
- @property
- def shape(self) -> _Shape: ...
- @property
- def ndim(self) -> int: ...
- @property
- def subdtype(self) -> None | tuple[dtype[Any], _Shape]: ...
- def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ...
- @property
- def str(self) -> builtins.str: ...
- @property
- def type(self) -> type[_DTypeScalar_co]: ...
- _ArrayLikeInt = Union[
- int,
- integer,
- Sequence[Union[int, integer]],
- Sequence[Sequence[Any]], # TODO: wait for support for recursive types
- ndarray
- ]
- _FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter)
- @final
- class flatiter(Generic[_NdArraySubClass]):
- __hash__: ClassVar[None]
- @property
- def base(self) -> _NdArraySubClass: ...
- @property
- def coords(self) -> _Shape: ...
- @property
- def index(self) -> int: ...
- def copy(self) -> _NdArraySubClass: ...
- def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ...
- def __next__(self: flatiter[ndarray[Any, dtype[_ScalarType]]]) -> _ScalarType: ...
- def __len__(self) -> int: ...
- @overload
- def __getitem__(
- self: flatiter[ndarray[Any, dtype[_ScalarType]]],
- key: int | integer | tuple[int | integer],
- ) -> _ScalarType: ...
- @overload
- def __getitem__(
- self,
- key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis],
- ) -> _NdArraySubClass: ...
- # TODO: `__setitem__` operates via `unsafe` casting rules, and can
- # thus accept any type accepted by the relevant underlying `np.generic`
- # constructor.
- # This means that `value` must in reality be a supertype of `npt.ArrayLike`.
- def __setitem__(
- self,
- key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis],
- value: Any,
- ) -> None: ...
- @overload
- def __array__(self: flatiter[ndarray[Any, _DType]], dtype: None = ..., /) -> ndarray[Any, _DType]: ...
- @overload
- def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
- _OrderKACF = L[None, "K", "A", "C", "F"]
- _OrderACF = L[None, "A", "C", "F"]
- _OrderCF = L[None, "C", "F"]
- _ModeKind = L["raise", "wrap", "clip"]
- _PartitionKind = L["introselect"]
- _SortKind = L["quicksort", "mergesort", "heapsort", "stable"]
- _SortSide = L["left", "right"]
- _ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon)
- class _ArrayOrScalarCommon:
- @property
- def T(self: _ArraySelf) -> _ArraySelf: ...
- @property
- def data(self) -> memoryview: ...
- @property
- def flags(self) -> flagsobj: ...
- @property
- def itemsize(self) -> int: ...
- @property
- def nbytes(self) -> int: ...
- def __bool__(self) -> bool: ...
- def __bytes__(self) -> bytes: ...
- def __str__(self) -> str: ...
- def __repr__(self) -> str: ...
- def __copy__(self: _ArraySelf) -> _ArraySelf: ...
- def __deepcopy__(self: _ArraySelf, memo: None | dict[int, Any], /) -> _ArraySelf: ...
- # TODO: How to deal with the non-commutative nature of `==` and `!=`?
- # xref numpy/numpy#17368
- def __eq__(self, other: Any) -> Any: ...
- def __ne__(self, other: Any) -> Any: ...
- def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
- def dump(self, file: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsWrite[bytes]) -> None: ...
- def dumps(self) -> bytes: ...
- def tobytes(self, order: _OrderKACF = ...) -> bytes: ...
- # NOTE: `tostring()` is deprecated and therefore excluded
- # def tostring(self, order=...): ...
- def tofile(
- self,
- fid: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _IOProtocol,
- sep: str = ...,
- format: str = ...,
- ) -> None: ...
- # generics and 0d arrays return builtin scalars
- def tolist(self) -> Any: ...
- @property
- def __array_interface__(self) -> dict[str, Any]: ...
- @property
- def __array_priority__(self) -> float: ...
- @property
- def __array_struct__(self) -> Any: ... # builtins.PyCapsule
- def __setstate__(self, state: tuple[
- SupportsIndex, # version
- _ShapeLike, # Shape
- _DType_co, # DType
- bool, # F-continuous
- bytes | list[Any], # Data
- ], /) -> None: ...
- # a `bool_` is returned when `keepdims=True` and `self` is a 0d array
- @overload
- def all(
- self,
- axis: None = ...,
- out: None = ...,
- keepdims: L[False] = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> bool_: ...
- @overload
- def all(
- self,
- axis: None | _ShapeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def all(
- self,
- axis: None | _ShapeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def any(
- self,
- axis: None = ...,
- out: None = ...,
- keepdims: L[False] = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> bool_: ...
- @overload
- def any(
- self,
- axis: None | _ShapeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def any(
- self,
- axis: None | _ShapeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def argmax(
- self,
- axis: None = ...,
- out: None = ...,
- *,
- keepdims: L[False] = ...,
- ) -> intp: ...
- @overload
- def argmax(
- self,
- axis: SupportsIndex = ...,
- out: None = ...,
- *,
- keepdims: bool = ...,
- ) -> Any: ...
- @overload
- def argmax(
- self,
- axis: None | SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- *,
- keepdims: bool = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def argmin(
- self,
- axis: None = ...,
- out: None = ...,
- *,
- keepdims: L[False] = ...,
- ) -> intp: ...
- @overload
- def argmin(
- self,
- axis: SupportsIndex = ...,
- out: None = ...,
- *,
- keepdims: bool = ...,
- ) -> Any: ...
- @overload
- def argmin(
- self,
- axis: None | SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- *,
- keepdims: bool = ...,
- ) -> _NdArraySubClass: ...
- def argsort(
- self,
- axis: None | SupportsIndex = ...,
- kind: None | _SortKind = ...,
- order: None | str | Sequence[str] = ...,
- ) -> ndarray: ...
- @overload
- def choose(
- self,
- choices: ArrayLike,
- out: None = ...,
- mode: _ModeKind = ...,
- ) -> ndarray: ...
- @overload
- def choose(
- self,
- choices: ArrayLike,
- out: _NdArraySubClass = ...,
- mode: _ModeKind = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def clip(
- self,
- min: ArrayLike = ...,
- max: None | ArrayLike = ...,
- out: None = ...,
- **kwargs: Any,
- ) -> ndarray: ...
- @overload
- def clip(
- self,
- min: None = ...,
- max: ArrayLike = ...,
- out: None = ...,
- **kwargs: Any,
- ) -> ndarray: ...
- @overload
- def clip(
- self,
- min: ArrayLike = ...,
- max: None | ArrayLike = ...,
- out: _NdArraySubClass = ...,
- **kwargs: Any,
- ) -> _NdArraySubClass: ...
- @overload
- def clip(
- self,
- min: None = ...,
- max: ArrayLike = ...,
- out: _NdArraySubClass = ...,
- **kwargs: Any,
- ) -> _NdArraySubClass: ...
- @overload
- def compress(
- self,
- a: ArrayLike,
- axis: None | SupportsIndex = ...,
- out: None = ...,
- ) -> ndarray: ...
- @overload
- def compress(
- self,
- a: ArrayLike,
- axis: None | SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- ) -> _NdArraySubClass: ...
- def conj(self: _ArraySelf) -> _ArraySelf: ...
- def conjugate(self: _ArraySelf) -> _ArraySelf: ...
- @overload
- def cumprod(
- self,
- axis: None | SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ) -> ndarray: ...
- @overload
- def cumprod(
- self,
- axis: None | SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def cumsum(
- self,
- axis: None | SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ) -> ndarray: ...
- @overload
- def cumsum(
- self,
- axis: None | SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def max(
- self,
- axis: None | _ShapeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def max(
- self,
- axis: None | _ShapeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def mean(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def mean(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def min(
- self,
- axis: None | _ShapeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def min(
- self,
- axis: None | _ShapeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- def newbyteorder(
- self: _ArraySelf,
- __new_order: _ByteOrder = ...,
- ) -> _ArraySelf: ...
- @overload
- def prod(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def prod(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def ptp(
- self,
- axis: None | _ShapeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- ) -> Any: ...
- @overload
- def ptp(
- self,
- axis: None | _ShapeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def round(
- self: _ArraySelf,
- decimals: SupportsIndex = ...,
- out: None = ...,
- ) -> _ArraySelf: ...
- @overload
- def round(
- self,
- decimals: SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def std(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: float = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def std(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- ddof: float = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def sum(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def sum(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def var(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: float = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> Any: ...
- @overload
- def var(
- self,
- axis: None | _ShapeLike = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- ddof: float = ...,
- keepdims: bool = ...,
- *,
- where: _ArrayLikeBool_co = ...,
- ) -> _NdArraySubClass: ...
- _DType = TypeVar("_DType", bound=dtype[Any])
- _DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
- _FlexDType = TypeVar("_FlexDType", bound=dtype[flexible])
- # TODO: Set the `bound` to something more suitable once we
- # have proper shape support
- _ShapeType = TypeVar("_ShapeType", bound=Any)
- _ShapeType2 = TypeVar("_ShapeType2", bound=Any)
- _NumberType = TypeVar("_NumberType", bound=number[Any])
- # There is currently no exhaustive way to type the buffer protocol,
- # as it is implemented exclusively in the C API (python/typing#593)
- _SupportsBuffer = Union[
- bytes,
- bytearray,
- memoryview,
- _array.array[Any],
- mmap.mmap,
- NDArray[Any],
- generic,
- ]
- _T = TypeVar("_T")
- _T_co = TypeVar("_T_co", covariant=True)
- _T_contra = TypeVar("_T_contra", contravariant=True)
- _2Tuple = tuple[_T, _T]
- _CastingKind = L["no", "equiv", "safe", "same_kind", "unsafe"]
- _ArrayUInt_co = NDArray[Union[bool_, unsignedinteger[Any]]]
- _ArrayInt_co = NDArray[Union[bool_, integer[Any]]]
- _ArrayFloat_co = NDArray[Union[bool_, integer[Any], floating[Any]]]
- _ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]]
- _ArrayNumber_co = NDArray[Union[bool_, number[Any]]]
- _ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]]
- # Introduce an alias for `dtype` to avoid naming conflicts.
- _dtype = dtype
- # `builtins.PyCapsule` unfortunately lacks annotations as of the moment;
- # use `Any` as a stopgap measure
- _PyCapsule = Any
- class _SupportsItem(Protocol[_T_co]):
- def item(self, args: Any, /) -> _T_co: ...
- class _SupportsReal(Protocol[_T_co]):
- @property
- def real(self) -> _T_co: ...
- class _SupportsImag(Protocol[_T_co]):
- @property
- def imag(self) -> _T_co: ...
- class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
- __hash__: ClassVar[None]
- @property
- def base(self) -> None | ndarray: ...
- @property
- def ndim(self) -> int: ...
- @property
- def size(self) -> int: ...
- @property
- def real(
- self: ndarray[_ShapeType, dtype[_SupportsReal[_ScalarType]]], # type: ignore[type-var]
- ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
- @real.setter
- def real(self, value: ArrayLike) -> None: ...
- @property
- def imag(
- self: ndarray[_ShapeType, dtype[_SupportsImag[_ScalarType]]], # type: ignore[type-var]
- ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
- @imag.setter
- def imag(self, value: ArrayLike) -> None: ...
- def __new__(
- cls: type[_ArraySelf],
- shape: _ShapeLike,
- dtype: DTypeLike = ...,
- buffer: None | _SupportsBuffer = ...,
- offset: SupportsIndex = ...,
- strides: None | _ShapeLike = ...,
- order: _OrderKACF = ...,
- ) -> _ArraySelf: ...
- if sys.version_info >= (3, 9):
- def __class_getitem__(self, item: Any) -> GenericAlias: ...
- @overload
- def __array__(self, dtype: None = ..., /) -> ndarray[Any, _DType_co]: ...
- @overload
- def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
- def __array_ufunc__(
- self,
- ufunc: ufunc,
- method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
- *inputs: Any,
- **kwargs: Any,
- ) -> Any: ...
- def __array_function__(
- self,
- func: Callable[..., Any],
- types: Iterable[type],
- args: Iterable[Any],
- kwargs: Mapping[str, Any],
- ) -> Any: ...
- # NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__`
- # is a pseudo-abstract method the type has been narrowed down in order to
- # grant subclasses a bit more flexiblity
- def __array_finalize__(self, obj: None | NDArray[Any], /) -> None: ...
- def __array_wrap__(
- self,
- array: ndarray[_ShapeType2, _DType],
- context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
- /,
- ) -> ndarray[_ShapeType2, _DType]: ...
- def __array_prepare__(
- self,
- array: ndarray[_ShapeType2, _DType],
- context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
- /,
- ) -> ndarray[_ShapeType2, _DType]: ...
- @overload
- def __getitem__(self, key: (
- NDArray[integer[Any]]
- | NDArray[bool_]
- | tuple[NDArray[integer[Any]] | NDArray[bool_], ...]
- )) -> ndarray[Any, _DType_co]: ...
- @overload
- def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...]) -> Any: ...
- @overload
- def __getitem__(self, key: (
- None
- | slice
- | ellipsis
- | SupportsIndex
- | _ArrayLikeInt_co
- | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
- )) -> ndarray[Any, _DType_co]: ...
- @overload
- def __getitem__(self: NDArray[void], key: str) -> NDArray[Any]: ...
- @overload
- def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, _dtype[void]]: ...
- @property
- def ctypes(self) -> _ctypes[int]: ...
- @property
- def shape(self) -> _Shape: ...
- @shape.setter
- def shape(self, value: _ShapeLike) -> None: ...
- @property
- def strides(self) -> _Shape: ...
- @strides.setter
- def strides(self, value: _ShapeLike) -> None: ...
- def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ...
- def fill(self, value: Any) -> None: ...
- @property
- def flat(self: _NdArraySubClass) -> flatiter[_NdArraySubClass]: ...
- # Use the same output type as that of the underlying `generic`
- @overload
- def item(
- self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
- *args: SupportsIndex,
- ) -> _T: ...
- @overload
- def item(
- self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
- args: tuple[SupportsIndex, ...],
- /,
- ) -> _T: ...
- @overload
- def itemset(self, value: Any, /) -> None: ...
- @overload
- def itemset(self, item: _ShapeLike, value: Any, /) -> None: ...
- @overload
- def resize(self, new_shape: _ShapeLike, /, *, refcheck: bool = ...) -> None: ...
- @overload
- def resize(self, *new_shape: SupportsIndex, refcheck: bool = ...) -> None: ...
- def setflags(
- self, write: bool = ..., align: bool = ..., uic: bool = ...
- ) -> None: ...
- def squeeze(
- self,
- axis: None | SupportsIndex | tuple[SupportsIndex, ...] = ...,
- ) -> ndarray[Any, _DType_co]: ...
- def swapaxes(
- self,
- axis1: SupportsIndex,
- axis2: SupportsIndex,
- ) -> ndarray[Any, _DType_co]: ...
- @overload
- def transpose(self: _ArraySelf, axes: None | _ShapeLike, /) -> _ArraySelf: ...
- @overload
- def transpose(self: _ArraySelf, *axes: SupportsIndex) -> _ArraySelf: ...
- def argpartition(
- self,
- kth: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- kind: _PartitionKind = ...,
- order: None | str | Sequence[str] = ...,
- ) -> ndarray[Any, _dtype[intp]]: ...
- def diagonal(
- self,
- offset: SupportsIndex = ...,
- axis1: SupportsIndex = ...,
- axis2: SupportsIndex = ...,
- ) -> ndarray[Any, _DType_co]: ...
- # 1D + 1D returns a scalar;
- # all other with at least 1 non-0D array return an ndarray.
- @overload
- def dot(self, b: _ScalarLike_co, out: None = ...) -> ndarray: ...
- @overload
- def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc]
- @overload
- def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ...
- # `nonzero()` is deprecated for 0d arrays/generics
- def nonzero(self) -> tuple[ndarray[Any, _dtype[intp]], ...]: ...
- def partition(
- self,
- kth: _ArrayLikeInt_co,
- axis: SupportsIndex = ...,
- kind: _PartitionKind = ...,
- order: None | str | Sequence[str] = ...,
- ) -> None: ...
- # `put` is technically available to `generic`,
- # but is pointless as `generic`s are immutable
- def put(
- self,
- ind: _ArrayLikeInt_co,
- v: ArrayLike,
- mode: _ModeKind = ...,
- ) -> None: ...
- @overload
- def searchsorted( # type: ignore[misc]
- self, # >= 1D array
- v: _ScalarLike_co, # 0D array-like
- side: _SortSide = ...,
- sorter: None | _ArrayLikeInt_co = ...,
- ) -> intp: ...
- @overload
- def searchsorted(
- self, # >= 1D array
- v: ArrayLike,
- side: _SortSide = ...,
- sorter: None | _ArrayLikeInt_co = ...,
- ) -> ndarray[Any, _dtype[intp]]: ...
- def setfield(
- self,
- val: ArrayLike,
- dtype: DTypeLike,
- offset: SupportsIndex = ...,
- ) -> None: ...
- def sort(
- self,
- axis: SupportsIndex = ...,
- kind: None | _SortKind = ...,
- order: None | str | Sequence[str] = ...,
- ) -> None: ...
- @overload
- def trace(
- self, # >= 2D array
- offset: SupportsIndex = ...,
- axis1: SupportsIndex = ...,
- axis2: SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ) -> Any: ...
- @overload
- def trace(
- self, # >= 2D array
- offset: SupportsIndex = ...,
- axis1: SupportsIndex = ...,
- axis2: SupportsIndex = ...,
- dtype: DTypeLike = ...,
- out: _NdArraySubClass = ...,
- ) -> _NdArraySubClass: ...
- @overload
- def take( # type: ignore[misc]
- self: ndarray[Any, _dtype[_ScalarType]],
- indices: _IntLike_co,
- axis: None | SupportsIndex = ...,
- out: None = ...,
- mode: _ModeKind = ...,
- ) -> _ScalarType: ...
- @overload
- def take( # type: ignore[misc]
- self,
- indices: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- out: None = ...,
- mode: _ModeKind = ...,
- ) -> ndarray[Any, _DType_co]: ...
- @overload
- def take(
- self,
- indices: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- mode: _ModeKind = ...,
- ) -> _NdArraySubClass: ...
- def repeat(
- self,
- repeats: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- ) -> ndarray[Any, _DType_co]: ...
- def flatten(
- self,
- order: _OrderKACF = ...,
- ) -> ndarray[Any, _DType_co]: ...
- def ravel(
- self,
- order: _OrderKACF = ...,
- ) -> ndarray[Any, _DType_co]: ...
- @overload
- def reshape(
- self, shape: _ShapeLike, /, *, order: _OrderACF = ...
- ) -> ndarray[Any, _DType_co]: ...
- @overload
- def reshape(
- self, *shape: SupportsIndex, order: _OrderACF = ...
- ) -> ndarray[Any, _DType_co]: ...
- @overload
- def astype(
- self,
- dtype: _DTypeLike[_ScalarType],
- order: _OrderKACF = ...,
- casting: _CastingKind = ...,
- subok: bool = ...,
- copy: bool | _CopyMode = ...,
- ) -> NDArray[_ScalarType]: ...
- @overload
- def astype(
- self,
- dtype: DTypeLike,
- order: _OrderKACF = ...,
- casting: _CastingKind = ...,
- subok: bool = ...,
- copy: bool | _CopyMode = ...,
- ) -> NDArray[Any]: ...
- @overload
- def view(self: _ArraySelf) -> _ArraySelf: ...
- @overload
- def view(self, type: type[_NdArraySubClass]) -> _NdArraySubClass: ...
- @overload
- def view(self, dtype: _DTypeLike[_ScalarType]) -> NDArray[_ScalarType]: ...
- @overload
- def view(self, dtype: DTypeLike) -> NDArray[Any]: ...
- @overload
- def view(
- self,
- dtype: DTypeLike,
- type: type[_NdArraySubClass],
- ) -> _NdArraySubClass: ...
- @overload
- def getfield(
- self,
- dtype: _DTypeLike[_ScalarType],
- offset: SupportsIndex = ...
- ) -> NDArray[_ScalarType]: ...
- @overload
- def getfield(
- self,
- dtype: DTypeLike,
- offset: SupportsIndex = ...
- ) -> NDArray[Any]: ...
- # Dispatch to the underlying `generic` via protocols
- def __int__(
- self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var]
- ) -> int: ...
- def __float__(
- self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var]
- ) -> float: ...
- def __complex__(
- self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var]
- ) -> complex: ...
- def __index__(
- self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var]
- ) -> int: ...
- def __len__(self) -> int: ...
- def __setitem__(self, key, value): ...
- def __iter__(self) -> Any: ...
- def __contains__(self, key) -> bool: ...
- # The last overload is for catching recursive objects whose
- # nesting is too deep.
- # The first overload is for catching `bytes` (as they are a subtype of
- # `Sequence[int]`) and `str`. As `str` is a recursive sequence of
- # strings, it will pass through the final overload otherwise
- @overload
- def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
- @overload
- def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
- @overload
- def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
- @overload
- def __lt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
- @overload
- def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
- @overload
- def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
- @overload
- def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
- @overload
- def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
- @overload
- def __le__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
- @overload
- def __le__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
- @overload
- def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
- @overload
- def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
- @overload
- def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
- @overload
- def __gt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
- @overload
- def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
- @overload
- def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
- @overload
- def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
- @overload
- def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
- @overload
- def __ge__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
- @overload
- def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
- # Unary ops
- @overload
- def __abs__(self: NDArray[bool_]) -> NDArray[bool_]: ...
- @overload
- def __abs__(self: NDArray[complexfloating[_NBit1, _NBit1]]) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __abs__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
- @overload
- def __abs__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
- @overload
- def __abs__(self: NDArray[object_]) -> Any: ...
- @overload
- def __invert__(self: NDArray[bool_]) -> NDArray[bool_]: ...
- @overload
- def __invert__(self: NDArray[_IntType]) -> NDArray[_IntType]: ...
- @overload
- def __invert__(self: NDArray[object_]) -> Any: ...
- @overload
- def __pos__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
- @overload
- def __pos__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
- @overload
- def __pos__(self: NDArray[object_]) -> Any: ...
- @overload
- def __neg__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
- @overload
- def __neg__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
- @overload
- def __neg__(self: NDArray[object_]) -> Any: ...
- # Binary ops
- # NOTE: `ndarray` does not implement `__imatmul__`
- @overload
- def __matmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def __matmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __matmul__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rmatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def __rmatmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __rmatmul__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __mod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
- @overload
- def __mod__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
- @overload
- def __rmod__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __divmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
- @overload
- def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
- @overload
- def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
- @overload
- def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
- @overload
- def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
- @overload
- def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
- @overload
- def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
- @overload
- def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
- @overload
- def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
- @overload
- def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
- @overload
- def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __add__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
- @overload
- def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
- @overload
- def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
- @overload
- def __add__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __add__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __radd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __radd__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
- @overload
- def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
- @overload
- def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
- @overload
- def __radd__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __sub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ...
- @overload
- def __sub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __sub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
- @overload
- def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
- @overload
- def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
- @overload
- def __sub__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rsub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ...
- @overload
- def __rsub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... # type: ignore[misc]
- @overload
- def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
- @overload
- def __rsub__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __mul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __mul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
- @overload
- def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __mul__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __rmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
- @overload
- def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __rmul__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __floordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
- @overload
- def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
- @overload
- def __floordiv__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
- @overload
- def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
- @overload
- def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __rfloordiv__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __pow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def __pow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __pow__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rpow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def __rpow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __rpow__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
- @overload
- def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __truediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
- @overload
- def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
- @overload
- def __truediv__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
- @overload
- def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
- @overload
- def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
- @overload
- def __rtruediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ...
- @overload
- def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
- @overload
- def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
- @overload
- def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __rtruediv__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __lshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __lshift__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rlshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __rlshift__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __rshift__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rrshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
- @overload
- def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __rrshift__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __and__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __and__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __and__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __rand__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __xor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __xor__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __rxor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __rxor__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __or__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __or__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __or__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- @overload
- def __ror__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
- @overload
- def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
- @overload
- def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
- @overload
- def __ror__(self: NDArray[object_], other: Any) -> Any: ...
- @overload
- def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
- # `np.generic` does not support inplace operations
- # NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left
- # operand. An exception to this rule are unsigned integers though, which
- # also accepts a signed integer for the right operand as long it is a 0D
- # object and its value is >= 0
- @overload
- def __iadd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
- @overload
- def __iadd__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __iadd__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __iadd__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __iadd__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
- @overload
- def __iadd__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __isub__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __isub__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __isub__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __isub__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
- @overload
- def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
- @overload
- def __isub__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __imul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
- @overload
- def __imul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __imul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __imul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __imul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
- @overload
- def __imul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __itruediv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __itruediv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
- @overload
- def __itruediv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __ifloordiv__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __ifloordiv__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __ifloordiv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __ifloordiv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
- @overload
- def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
- @overload
- def __ifloordiv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __ipow__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __ipow__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __ipow__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __ipow__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
- @overload
- def __ipow__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __imod__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __imod__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
- @overload
- def __imod__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
- @overload
- def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __ilshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __ilshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __ilshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __irshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __irshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __irshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __iand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
- @overload
- def __iand__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __iand__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __iand__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __ixor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
- @overload
- def __ixor__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __ixor__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __ixor__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- @overload
- def __ior__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
- @overload
- def __ior__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ...
- @overload
- def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
- @overload
- def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
- def __dlpack__(self: NDArray[number[Any]], *, stream: None = ...) -> _PyCapsule: ...
- def __dlpack_device__(self) -> tuple[int, L[0]]: ...
- # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
- @property
- def dtype(self) -> _DType_co: ...
- # NOTE: while `np.generic` is not technically an instance of `ABCMeta`,
- # the `@abstractmethod` decorator is herein used to (forcefully) deny
- # the creation of `np.generic` instances.
- # The `# type: ignore` comments are necessary to silence mypy errors regarding
- # the missing `ABCMeta` metaclass.
- # See https://github.com/numpy/numpy-stubs/pull/80 for more details.
- _ScalarType = TypeVar("_ScalarType", bound=generic)
- _NBit1 = TypeVar("_NBit1", bound=NBitBase)
- _NBit2 = TypeVar("_NBit2", bound=NBitBase)
- class generic(_ArrayOrScalarCommon):
- @abstractmethod
- def __init__(self, *args: Any, **kwargs: Any) -> None: ...
- @overload
- def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, _dtype[_ScalarType]]: ...
- @overload
- def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ...
- @property
- def base(self) -> None: ...
- @property
- def ndim(self) -> L[0]: ...
- @property
- def size(self) -> L[1]: ...
- @property
- def shape(self) -> tuple[()]: ...
- @property
- def strides(self) -> tuple[()]: ...
- def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ...
- @property
- def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ...
- @overload
- def astype(
- self,
- dtype: _DTypeLike[_ScalarType],
- order: _OrderKACF = ...,
- casting: _CastingKind = ...,
- subok: bool = ...,
- copy: bool | _CopyMode = ...,
- ) -> _ScalarType: ...
- @overload
- def astype(
- self,
- dtype: DTypeLike,
- order: _OrderKACF = ...,
- casting: _CastingKind = ...,
- subok: bool = ...,
- copy: bool | _CopyMode = ...,
- ) -> Any: ...
- # NOTE: `view` will perform a 0D->scalar cast,
- # thus the array `type` is irrelevant to the output type
- @overload
- def view(
- self: _ScalarType,
- type: type[ndarray[Any, Any]] = ...,
- ) -> _ScalarType: ...
- @overload
- def view(
- self,
- dtype: _DTypeLike[_ScalarType],
- type: type[ndarray[Any, Any]] = ...,
- ) -> _ScalarType: ...
- @overload
- def view(
- self,
- dtype: DTypeLike,
- type: type[ndarray[Any, Any]] = ...,
- ) -> Any: ...
- @overload
- def getfield(
- self,
- dtype: _DTypeLike[_ScalarType],
- offset: SupportsIndex = ...
- ) -> _ScalarType: ...
- @overload
- def getfield(
- self,
- dtype: DTypeLike,
- offset: SupportsIndex = ...
- ) -> Any: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> Any: ...
- @overload
- def take( # type: ignore[misc]
- self: _ScalarType,
- indices: _IntLike_co,
- axis: None | SupportsIndex = ...,
- out: None = ...,
- mode: _ModeKind = ...,
- ) -> _ScalarType: ...
- @overload
- def take( # type: ignore[misc]
- self: _ScalarType,
- indices: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- out: None = ...,
- mode: _ModeKind = ...,
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- @overload
- def take(
- self,
- indices: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- out: _NdArraySubClass = ...,
- mode: _ModeKind = ...,
- ) -> _NdArraySubClass: ...
- def repeat(
- self: _ScalarType,
- repeats: _ArrayLikeInt_co,
- axis: None | SupportsIndex = ...,
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- def flatten(
- self: _ScalarType,
- order: _OrderKACF = ...,
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- def ravel(
- self: _ScalarType,
- order: _OrderKACF = ...,
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- @overload
- def reshape(
- self: _ScalarType, shape: _ShapeLike, /, *, order: _OrderACF = ...
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- @overload
- def reshape(
- self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ...
- ) -> ndarray[Any, _dtype[_ScalarType]]: ...
- def squeeze(
- self: _ScalarType, axis: None | L[0] | tuple[()] = ...
- ) -> _ScalarType: ...
- def transpose(self: _ScalarType, axes: None | tuple[()] = ..., /) -> _ScalarType: ...
- # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
- @property
- def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ...
- class number(generic, Generic[_NBit1]): # type: ignore
- @property
- def real(self: _ArraySelf) -> _ArraySelf: ...
- @property
- def imag(self: _ArraySelf) -> _ArraySelf: ...
- if sys.version_info >= (3, 9):
- def __class_getitem__(self, item: Any) -> GenericAlias: ...
- def __int__(self) -> int: ...
- def __float__(self) -> float: ...
- def __complex__(self) -> complex: ...
- def __neg__(self: _ArraySelf) -> _ArraySelf: ...
- def __pos__(self: _ArraySelf) -> _ArraySelf: ...
- def __abs__(self: _ArraySelf) -> _ArraySelf: ...
- # Ensure that objects annotated as `number` support arithmetic operations
- __add__: _NumberOp
- __radd__: _NumberOp
- __sub__: _NumberOp
- __rsub__: _NumberOp
- __mul__: _NumberOp
- __rmul__: _NumberOp
- __floordiv__: _NumberOp
- __rfloordiv__: _NumberOp
- __pow__: _NumberOp
- __rpow__: _NumberOp
- __truediv__: _NumberOp
- __rtruediv__: _NumberOp
- __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- class bool_(generic):
- def __init__(self, value: object = ..., /) -> None: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> bool: ...
- def tolist(self) -> bool: ...
- @property
- def real(self: _ArraySelf) -> _ArraySelf: ...
- @property
- def imag(self: _ArraySelf) -> _ArraySelf: ...
- def __int__(self) -> int: ...
- def __float__(self) -> float: ...
- def __complex__(self) -> complex: ...
- def __abs__(self: _ArraySelf) -> _ArraySelf: ...
- __add__: _BoolOp[bool_]
- __radd__: _BoolOp[bool_]
- __sub__: _BoolSub
- __rsub__: _BoolSub
- __mul__: _BoolOp[bool_]
- __rmul__: _BoolOp[bool_]
- __floordiv__: _BoolOp[int8]
- __rfloordiv__: _BoolOp[int8]
- __pow__: _BoolOp[int8]
- __rpow__: _BoolOp[int8]
- __truediv__: _BoolTrueDiv
- __rtruediv__: _BoolTrueDiv
- def __invert__(self) -> bool_: ...
- __lshift__: _BoolBitOp[int8]
- __rlshift__: _BoolBitOp[int8]
- __rshift__: _BoolBitOp[int8]
- __rrshift__: _BoolBitOp[int8]
- __and__: _BoolBitOp[bool_]
- __rand__: _BoolBitOp[bool_]
- __xor__: _BoolBitOp[bool_]
- __rxor__: _BoolBitOp[bool_]
- __or__: _BoolBitOp[bool_]
- __ror__: _BoolBitOp[bool_]
- __mod__: _BoolMod
- __rmod__: _BoolMod
- __divmod__: _BoolDivMod
- __rdivmod__: _BoolDivMod
- __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
- class object_(generic):
- def __init__(self, value: object = ..., /) -> None: ...
- @property
- def real(self: _ArraySelf) -> _ArraySelf: ...
- @property
- def imag(self: _ArraySelf) -> _ArraySelf: ...
- # The 3 protocols below may or may not raise,
- # depending on the underlying object
- def __int__(self) -> int: ...
- def __float__(self) -> float: ...
- def __complex__(self) -> complex: ...
- # The `datetime64` constructors requires an object with the three attributes below,
- # and thus supports datetime duck typing
- class _DatetimeScalar(Protocol):
- @property
- def day(self) -> int: ...
- @property
- def month(self) -> int: ...
- @property
- def year(self) -> int: ...
- # TODO: `item`/`tolist` returns either `dt.date`, `dt.datetime` or `int`
- # depending on the unit
- class datetime64(generic):
- @overload
- def __init__(
- self,
- value: None | datetime64 | _CharLike_co | _DatetimeScalar = ...,
- format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ...,
- /,
- ) -> None: ...
- @overload
- def __init__(
- self,
- value: int,
- format: _CharLike_co | tuple[_CharLike_co, _IntLike_co],
- /,
- ) -> None: ...
- def __add__(self, other: _TD64Like_co) -> datetime64: ...
- def __radd__(self, other: _TD64Like_co) -> datetime64: ...
- @overload
- def __sub__(self, other: datetime64) -> timedelta64: ...
- @overload
- def __sub__(self, other: _TD64Like_co) -> datetime64: ...
- def __rsub__(self, other: datetime64) -> timedelta64: ...
- __lt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
- __le__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
- __gt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
- __ge__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
- _IntValue = Union[SupportsInt, _CharLike_co, SupportsIndex]
- _FloatValue = Union[None, _CharLike_co, SupportsFloat, SupportsIndex]
- _ComplexValue = Union[
- None,
- _CharLike_co,
- SupportsFloat,
- SupportsComplex,
- SupportsIndex,
- complex, # `complex` is not a subtype of `SupportsComplex`
- ]
- class integer(number[_NBit1]): # type: ignore
- @property
- def numerator(self: _ScalarType) -> _ScalarType: ...
- @property
- def denominator(self) -> L[1]: ...
- @overload
- def __round__(self, ndigits: None = ...) -> int: ...
- @overload
- def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
- # NOTE: `__index__` is technically defined in the bottom-most
- # sub-classes (`int64`, `uint32`, etc)
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> int: ...
- def tolist(self) -> int: ...
- def is_integer(self) -> L[True]: ...
- def bit_count(self: _ScalarType) -> int: ...
- def __index__(self) -> int: ...
- __truediv__: _IntTrueDiv[_NBit1]
- __rtruediv__: _IntTrueDiv[_NBit1]
- def __mod__(self, value: _IntLike_co) -> integer: ...
- def __rmod__(self, value: _IntLike_co) -> integer: ...
- def __invert__(self: _IntType) -> _IntType: ...
- # Ensure that objects annotated as `integer` support bit-wise operations
- def __lshift__(self, other: _IntLike_co) -> integer: ...
- def __rlshift__(self, other: _IntLike_co) -> integer: ...
- def __rshift__(self, other: _IntLike_co) -> integer: ...
- def __rrshift__(self, other: _IntLike_co) -> integer: ...
- def __and__(self, other: _IntLike_co) -> integer: ...
- def __rand__(self, other: _IntLike_co) -> integer: ...
- def __or__(self, other: _IntLike_co) -> integer: ...
- def __ror__(self, other: _IntLike_co) -> integer: ...
- def __xor__(self, other: _IntLike_co) -> integer: ...
- def __rxor__(self, other: _IntLike_co) -> integer: ...
- class signedinteger(integer[_NBit1]):
- def __init__(self, value: _IntValue = ..., /) -> None: ...
- __add__: _SignedIntOp[_NBit1]
- __radd__: _SignedIntOp[_NBit1]
- __sub__: _SignedIntOp[_NBit1]
- __rsub__: _SignedIntOp[_NBit1]
- __mul__: _SignedIntOp[_NBit1]
- __rmul__: _SignedIntOp[_NBit1]
- __floordiv__: _SignedIntOp[_NBit1]
- __rfloordiv__: _SignedIntOp[_NBit1]
- __pow__: _SignedIntOp[_NBit1]
- __rpow__: _SignedIntOp[_NBit1]
- __lshift__: _SignedIntBitOp[_NBit1]
- __rlshift__: _SignedIntBitOp[_NBit1]
- __rshift__: _SignedIntBitOp[_NBit1]
- __rrshift__: _SignedIntBitOp[_NBit1]
- __and__: _SignedIntBitOp[_NBit1]
- __rand__: _SignedIntBitOp[_NBit1]
- __xor__: _SignedIntBitOp[_NBit1]
- __rxor__: _SignedIntBitOp[_NBit1]
- __or__: _SignedIntBitOp[_NBit1]
- __ror__: _SignedIntBitOp[_NBit1]
- __mod__: _SignedIntMod[_NBit1]
- __rmod__: _SignedIntMod[_NBit1]
- __divmod__: _SignedIntDivMod[_NBit1]
- __rdivmod__: _SignedIntDivMod[_NBit1]
- int8 = signedinteger[_8Bit]
- int16 = signedinteger[_16Bit]
- int32 = signedinteger[_32Bit]
- int64 = signedinteger[_64Bit]
- byte = signedinteger[_NBitByte]
- short = signedinteger[_NBitShort]
- intc = signedinteger[_NBitIntC]
- intp = signedinteger[_NBitIntP]
- int_ = signedinteger[_NBitInt]
- longlong = signedinteger[_NBitLongLong]
- # TODO: `item`/`tolist` returns either `dt.timedelta` or `int`
- # depending on the unit
- class timedelta64(generic):
- def __init__(
- self,
- value: None | int | _CharLike_co | dt.timedelta | timedelta64 = ...,
- format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ...,
- /,
- ) -> None: ...
- @property
- def numerator(self: _ScalarType) -> _ScalarType: ...
- @property
- def denominator(self) -> L[1]: ...
- # NOTE: Only a limited number of units support conversion
- # to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as`
- def __int__(self) -> int: ...
- def __float__(self) -> float: ...
- def __complex__(self) -> complex: ...
- def __neg__(self: _ArraySelf) -> _ArraySelf: ...
- def __pos__(self: _ArraySelf) -> _ArraySelf: ...
- def __abs__(self: _ArraySelf) -> _ArraySelf: ...
- def __add__(self, other: _TD64Like_co) -> timedelta64: ...
- def __radd__(self, other: _TD64Like_co) -> timedelta64: ...
- def __sub__(self, other: _TD64Like_co) -> timedelta64: ...
- def __rsub__(self, other: _TD64Like_co) -> timedelta64: ...
- def __mul__(self, other: _FloatLike_co) -> timedelta64: ...
- def __rmul__(self, other: _FloatLike_co) -> timedelta64: ...
- __truediv__: _TD64Div[float64]
- __floordiv__: _TD64Div[int64]
- def __rtruediv__(self, other: timedelta64) -> float64: ...
- def __rfloordiv__(self, other: timedelta64) -> int64: ...
- def __mod__(self, other: timedelta64) -> timedelta64: ...
- def __rmod__(self, other: timedelta64) -> timedelta64: ...
- def __divmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ...
- def __rdivmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ...
- __lt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
- __le__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
- __gt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
- __ge__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
- class unsignedinteger(integer[_NBit1]):
- # NOTE: `uint64 + signedinteger -> float64`
- def __init__(self, value: _IntValue = ..., /) -> None: ...
- __add__: _UnsignedIntOp[_NBit1]
- __radd__: _UnsignedIntOp[_NBit1]
- __sub__: _UnsignedIntOp[_NBit1]
- __rsub__: _UnsignedIntOp[_NBit1]
- __mul__: _UnsignedIntOp[_NBit1]
- __rmul__: _UnsignedIntOp[_NBit1]
- __floordiv__: _UnsignedIntOp[_NBit1]
- __rfloordiv__: _UnsignedIntOp[_NBit1]
- __pow__: _UnsignedIntOp[_NBit1]
- __rpow__: _UnsignedIntOp[_NBit1]
- __lshift__: _UnsignedIntBitOp[_NBit1]
- __rlshift__: _UnsignedIntBitOp[_NBit1]
- __rshift__: _UnsignedIntBitOp[_NBit1]
- __rrshift__: _UnsignedIntBitOp[_NBit1]
- __and__: _UnsignedIntBitOp[_NBit1]
- __rand__: _UnsignedIntBitOp[_NBit1]
- __xor__: _UnsignedIntBitOp[_NBit1]
- __rxor__: _UnsignedIntBitOp[_NBit1]
- __or__: _UnsignedIntBitOp[_NBit1]
- __ror__: _UnsignedIntBitOp[_NBit1]
- __mod__: _UnsignedIntMod[_NBit1]
- __rmod__: _UnsignedIntMod[_NBit1]
- __divmod__: _UnsignedIntDivMod[_NBit1]
- __rdivmod__: _UnsignedIntDivMod[_NBit1]
- uint8 = unsignedinteger[_8Bit]
- uint16 = unsignedinteger[_16Bit]
- uint32 = unsignedinteger[_32Bit]
- uint64 = unsignedinteger[_64Bit]
- ubyte = unsignedinteger[_NBitByte]
- ushort = unsignedinteger[_NBitShort]
- uintc = unsignedinteger[_NBitIntC]
- uintp = unsignedinteger[_NBitIntP]
- uint = unsignedinteger[_NBitInt]
- ulonglong = unsignedinteger[_NBitLongLong]
- class inexact(number[_NBit1]): # type: ignore
- def __getnewargs__(self: inexact[_64Bit]) -> tuple[float, ...]: ...
- _IntType = TypeVar("_IntType", bound=integer)
- _FloatType = TypeVar('_FloatType', bound=floating)
- class floating(inexact[_NBit1]):
- def __init__(self, value: _FloatValue = ..., /) -> None: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ...,
- /,
- ) -> float: ...
- def tolist(self) -> float: ...
- def is_integer(self) -> bool: ...
- def hex(self: float64) -> str: ...
- @classmethod
- def fromhex(cls: type[float64], string: str, /) -> float64: ...
- def as_integer_ratio(self) -> tuple[int, int]: ...
- if sys.version_info >= (3, 9):
- def __ceil__(self: float64) -> int: ...
- def __floor__(self: float64) -> int: ...
- def __trunc__(self: float64) -> int: ...
- def __getnewargs__(self: float64) -> tuple[float]: ...
- def __getformat__(self: float64, typestr: L["double", "float"], /) -> str: ...
- @overload
- def __round__(self, ndigits: None = ...) -> int: ...
- @overload
- def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
- __add__: _FloatOp[_NBit1]
- __radd__: _FloatOp[_NBit1]
- __sub__: _FloatOp[_NBit1]
- __rsub__: _FloatOp[_NBit1]
- __mul__: _FloatOp[_NBit1]
- __rmul__: _FloatOp[_NBit1]
- __truediv__: _FloatOp[_NBit1]
- __rtruediv__: _FloatOp[_NBit1]
- __floordiv__: _FloatOp[_NBit1]
- __rfloordiv__: _FloatOp[_NBit1]
- __pow__: _FloatOp[_NBit1]
- __rpow__: _FloatOp[_NBit1]
- __mod__: _FloatMod[_NBit1]
- __rmod__: _FloatMod[_NBit1]
- __divmod__: _FloatDivMod[_NBit1]
- __rdivmod__: _FloatDivMod[_NBit1]
- float16 = floating[_16Bit]
- float32 = floating[_32Bit]
- float64 = floating[_64Bit]
- half = floating[_NBitHalf]
- single = floating[_NBitSingle]
- double = floating[_NBitDouble]
- float_ = floating[_NBitDouble]
- longdouble = floating[_NBitLongDouble]
- longfloat = floating[_NBitLongDouble]
- # The main reason for `complexfloating` having two typevars is cosmetic.
- # It is used to clarify why `complex128`s precision is `_64Bit`, the latter
- # describing the two 64 bit floats representing its real and imaginary component
- class complexfloating(inexact[_NBit1], Generic[_NBit1, _NBit2]):
- def __init__(self, value: _ComplexValue = ..., /) -> None: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> complex: ...
- def tolist(self) -> complex: ...
- @property
- def real(self) -> floating[_NBit1]: ... # type: ignore[override]
- @property
- def imag(self) -> floating[_NBit2]: ... # type: ignore[override]
- def __abs__(self) -> floating[_NBit1]: ... # type: ignore[override]
- def __getnewargs__(self: complex128) -> tuple[float, float]: ...
- # NOTE: Deprecated
- # def __round__(self, ndigits=...): ...
- __add__: _ComplexOp[_NBit1]
- __radd__: _ComplexOp[_NBit1]
- __sub__: _ComplexOp[_NBit1]
- __rsub__: _ComplexOp[_NBit1]
- __mul__: _ComplexOp[_NBit1]
- __rmul__: _ComplexOp[_NBit1]
- __truediv__: _ComplexOp[_NBit1]
- __rtruediv__: _ComplexOp[_NBit1]
- __pow__: _ComplexOp[_NBit1]
- __rpow__: _ComplexOp[_NBit1]
- complex64 = complexfloating[_32Bit, _32Bit]
- complex128 = complexfloating[_64Bit, _64Bit]
- csingle = complexfloating[_NBitSingle, _NBitSingle]
- singlecomplex = complexfloating[_NBitSingle, _NBitSingle]
- cdouble = complexfloating[_NBitDouble, _NBitDouble]
- complex_ = complexfloating[_NBitDouble, _NBitDouble]
- cfloat = complexfloating[_NBitDouble, _NBitDouble]
- clongdouble = complexfloating[_NBitLongDouble, _NBitLongDouble]
- clongfloat = complexfloating[_NBitLongDouble, _NBitLongDouble]
- longcomplex = complexfloating[_NBitLongDouble, _NBitLongDouble]
- class flexible(generic): ... # type: ignore
- # TODO: `item`/`tolist` returns either `bytes` or `tuple`
- # depending on whether or not it's used as an opaque bytes sequence
- # or a structure
- class void(flexible):
- @overload
- def __init__(self, value: _IntLike_co | bytes, /, dtype : None = ...) -> None: ...
- @overload
- def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ...
- @property
- def real(self: _ArraySelf) -> _ArraySelf: ...
- @property
- def imag(self: _ArraySelf) -> _ArraySelf: ...
- def setfield(
- self, val: ArrayLike, dtype: DTypeLike, offset: int = ...
- ) -> None: ...
- @overload
- def __getitem__(self, key: str | SupportsIndex) -> Any: ...
- @overload
- def __getitem__(self, key: list[str]) -> void: ...
- def __setitem__(
- self,
- key: str | list[str] | SupportsIndex,
- value: ArrayLike,
- ) -> None: ...
- class character(flexible): # type: ignore
- def __int__(self) -> int: ...
- def __float__(self) -> float: ...
- # NOTE: Most `np.bytes_` / `np.str_` methods return their
- # builtin `bytes` / `str` counterpart
- class bytes_(character, bytes):
- @overload
- def __init__(self, value: object = ..., /) -> None: ...
- @overload
- def __init__(
- self, value: str, /, encoding: str = ..., errors: str = ...
- ) -> None: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> bytes: ...
- def tolist(self) -> bytes: ...
- string_ = bytes_
- class str_(character, str):
- @overload
- def __init__(self, value: object = ..., /) -> None: ...
- @overload
- def __init__(
- self, value: bytes, /, encoding: str = ..., errors: str = ...
- ) -> None: ...
- def item(
- self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /,
- ) -> str: ...
- def tolist(self) -> str: ...
- unicode_ = str_
- #
- # Constants
- #
- Inf: Final[float]
- Infinity: Final[float]
- NAN: Final[float]
- NINF: Final[float]
- NZERO: Final[float]
- NaN: Final[float]
- PINF: Final[float]
- PZERO: Final[float]
- e: Final[float]
- euler_gamma: Final[float]
- inf: Final[float]
- infty: Final[float]
- nan: Final[float]
- pi: Final[float]
- ERR_IGNORE: L[0]
- ERR_WARN: L[1]
- ERR_RAISE: L[2]
- ERR_CALL: L[3]
- ERR_PRINT: L[4]
- ERR_LOG: L[5]
- ERR_DEFAULT: L[521]
- SHIFT_DIVIDEBYZERO: L[0]
- SHIFT_OVERFLOW: L[3]
- SHIFT_UNDERFLOW: L[6]
- SHIFT_INVALID: L[9]
- FPE_DIVIDEBYZERO: L[1]
- FPE_OVERFLOW: L[2]
- FPE_UNDERFLOW: L[4]
- FPE_INVALID: L[8]
- FLOATING_POINT_SUPPORT: L[1]
- UFUNC_BUFSIZE_DEFAULT = BUFSIZE
- little_endian: Final[bool]
- True_: Final[bool_]
- False_: Final[bool_]
- UFUNC_PYVALS_NAME: L["UFUNC_PYVALS"]
- newaxis: None
- # See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs
- @final
- class ufunc:
- @property
- def __name__(self) -> str: ...
- @property
- def __doc__(self) -> str: ...
- __call__: Callable[..., Any]
- @property
- def nin(self) -> int: ...
- @property
- def nout(self) -> int: ...
- @property
- def nargs(self) -> int: ...
- @property
- def ntypes(self) -> int: ...
- @property
- def types(self) -> list[str]: ...
- # Broad return type because it has to encompass things like
- #
- # >>> np.logical_and.identity is True
- # True
- # >>> np.add.identity is 0
- # True
- # >>> np.sin.identity is None
- # True
- #
- # and any user-defined ufuncs.
- @property
- def identity(self) -> Any: ...
- # This is None for ufuncs and a string for gufuncs.
- @property
- def signature(self) -> None | str: ...
- # The next four methods will always exist, but they will just
- # raise a ValueError ufuncs with that don't accept two input
- # arguments and return one output argument. Because of that we
- # can't type them very precisely.
- reduce: Any
- accumulate: Any
- reduceat: Any
- outer: Any
- # Similarly at won't be defined for ufuncs that return multiple
- # outputs, so we can't type it very precisely.
- at: Any
- # Parameters: `__name__`, `ntypes` and `identity`
- absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None]
- add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]]
- arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None]
- arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None]
- arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None]
- arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None]
- arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None]
- arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None]
- arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None]
- bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]]
- bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
- bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]]
- bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]]
- cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None]
- ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None]
- conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
- conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
- copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None]
- cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None]
- cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None]
- deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None]
- degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None]
- divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
- divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None]
- equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None]
- exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None]
- exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None]
- expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None]
- fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None]
- float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None]
- floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None]
- floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None]
- fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None]
- fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None]
- fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None]
- frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None]
- gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]]
- greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None]
- greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None]
- heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None]
- hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]]
- invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
- isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None]
- isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None]
- isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None]
- isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None]
- lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None]
- ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None]
- left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None]
- less: _UFunc_Nin2_Nout1[L['less'], L[23], None]
- less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None]
- log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None]
- log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None]
- log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None]
- log: _UFunc_Nin1_Nout1[L['log'], L[10], None]
- logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float]
- logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float]
- logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]]
- logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None]
- logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]]
- logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]]
- matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None]
- maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None]
- minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None]
- mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
- modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None]
- multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]]
- negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None]
- nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None]
- not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None]
- positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None]
- power: _UFunc_Nin2_Nout1[L['power'], L[18], None]
- rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None]
- radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None]
- reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None]
- remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
- right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None]
- rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None]
- sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None]
- signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None]
- sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None]
- sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None]
- spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None]
- sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None]
- square: _UFunc_Nin1_Nout1[L['square'], L[18], None]
- subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None]
- tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None]
- tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None]
- true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
- trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None]
- abs = absolute
- class _CopyMode(enum.Enum):
- ALWAYS: L[True]
- IF_NEEDED: L[False]
- NEVER: L[2]
- # Warnings
- class ModuleDeprecationWarning(DeprecationWarning): ...
- class VisibleDeprecationWarning(UserWarning): ...
- class ComplexWarning(RuntimeWarning): ...
- class RankWarning(UserWarning): ...
- # Errors
- class TooHardError(RuntimeError): ...
- class AxisError(ValueError, IndexError):
- axis: None | int
- ndim: None | int
- @overload
- def __init__(self, axis: str, ndim: None = ..., msg_prefix: None = ...) -> None: ...
- @overload
- def __init__(self, axis: int, ndim: int, msg_prefix: None | str = ...) -> None: ...
- _CallType = TypeVar("_CallType", bound=_ErrFunc | _SupportsWrite[str])
- class errstate(Generic[_CallType], ContextDecorator):
- call: _CallType
- kwargs: _ErrDictOptional
- # Expand `**kwargs` into explicit keyword-only arguments
- def __init__(
- self,
- *,
- call: _CallType = ...,
- all: None | _ErrKind = ...,
- divide: None | _ErrKind = ...,
- over: None | _ErrKind = ...,
- under: None | _ErrKind = ...,
- invalid: None | _ErrKind = ...,
- ) -> None: ...
- def __enter__(self) -> None: ...
- def __exit__(
- self,
- exc_type: None | type[BaseException],
- exc_value: None | BaseException,
- traceback: None | TracebackType,
- /,
- ) -> None: ...
- @contextmanager
- def _no_nep50_warning() -> Generator[None, None, None]: ...
- def _get_promotion_state() -> str: ...
- def _set_promotion_state(state: str, /) -> None: ...
- class ndenumerate(Generic[_ScalarType]):
- iter: flatiter[NDArray[_ScalarType]]
- @overload
- def __new__(
- cls, arr: _FiniteNestedSequence[_SupportsArray[dtype[_ScalarType]]],
- ) -> ndenumerate[_ScalarType]: ...
- @overload
- def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[str_]: ...
- @overload
- def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[bytes_]: ...
- @overload
- def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[bool_]: ...
- @overload
- def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[int_]: ...
- @overload
- def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[float_]: ...
- @overload
- def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[complex_]: ...
- def __next__(self: ndenumerate[_ScalarType]) -> tuple[_Shape, _ScalarType]: ...
- def __iter__(self: _T) -> _T: ...
- class ndindex:
- @overload
- def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ...
- @overload
- def __init__(self, *shape: SupportsIndex) -> None: ...
- def __iter__(self: _T) -> _T: ...
- def __next__(self) -> _Shape: ...
- class DataSource:
- def __init__(
- self,
- destpath: None | str | os.PathLike[str] = ...,
- ) -> None: ...
- def __del__(self) -> None: ...
- def abspath(self, path: str) -> str: ...
- def exists(self, path: str) -> bool: ...
- # Whether the file-object is opened in string or bytes mode (by default)
- # depends on the file-extension of `path`
- def open(
- self,
- path: str,
- mode: str = ...,
- encoding: None | str = ...,
- newline: None | str = ...,
- ) -> IO[Any]: ...
- # TODO: The type of each `__next__` and `iters` return-type depends
- # on the length and dtype of `args`; we can't describe this behavior yet
- # as we lack variadics (PEP 646).
- @final
- class broadcast:
- def __new__(cls, *args: ArrayLike) -> broadcast: ...
- @property
- def index(self) -> int: ...
- @property
- def iters(self) -> tuple[flatiter[Any], ...]: ...
- @property
- def nd(self) -> int: ...
- @property
- def ndim(self) -> int: ...
- @property
- def numiter(self) -> int: ...
- @property
- def shape(self) -> _Shape: ...
- @property
- def size(self) -> int: ...
- def __next__(self) -> tuple[Any, ...]: ...
- def __iter__(self: _T) -> _T: ...
- def reset(self) -> None: ...
- @final
- class busdaycalendar:
- def __new__(
- cls,
- weekmask: ArrayLike = ...,
- holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ...,
- ) -> busdaycalendar: ...
- @property
- def weekmask(self) -> NDArray[bool_]: ...
- @property
- def holidays(self) -> NDArray[datetime64]: ...
- class finfo(Generic[_FloatType]):
- dtype: dtype[_FloatType]
- bits: int
- eps: _FloatType
- epsneg: _FloatType
- iexp: int
- machep: int
- max: _FloatType
- maxexp: int
- min: _FloatType
- minexp: int
- negep: int
- nexp: int
- nmant: int
- precision: int
- resolution: _FloatType
- smallest_subnormal: _FloatType
- @property
- def smallest_normal(self) -> _FloatType: ...
- @property
- def tiny(self) -> _FloatType: ...
- @overload
- def __new__(
- cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]]
- ) -> finfo[floating[_NBit1]]: ...
- @overload
- def __new__(
- cls, dtype: complex | float | type[complex] | type[float]
- ) -> finfo[float_]: ...
- @overload
- def __new__(
- cls, dtype: str
- ) -> finfo[floating[Any]]: ...
- class iinfo(Generic[_IntType]):
- dtype: dtype[_IntType]
- kind: str
- bits: int
- key: str
- @property
- def min(self) -> int: ...
- @property
- def max(self) -> int: ...
- @overload
- def __new__(cls, dtype: _IntType | _DTypeLike[_IntType]) -> iinfo[_IntType]: ...
- @overload
- def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ...
- @overload
- def __new__(cls, dtype: str) -> iinfo[Any]: ...
- class format_parser:
- dtype: dtype[void]
- def __init__(
- self,
- formats: DTypeLike,
- names: None | str | Sequence[str],
- titles: None | str | Sequence[str],
- aligned: bool = ...,
- byteorder: None | _ByteOrder = ...,
- ) -> None: ...
- class recarray(ndarray[_ShapeType, _DType_co]):
- # NOTE: While not strictly mandatory, we're demanding here that arguments
- # for the `format_parser`- and `dtype`-based dtype constructors are
- # mutually exclusive
- @overload
- def __new__(
- subtype,
- shape: _ShapeLike,
- dtype: None = ...,
- buf: None | _SupportsBuffer = ...,
- offset: SupportsIndex = ...,
- strides: None | _ShapeLike = ...,
- *,
- formats: DTypeLike,
- names: None | str | Sequence[str] = ...,
- titles: None | str | Sequence[str] = ...,
- byteorder: None | _ByteOrder = ...,
- aligned: bool = ...,
- order: _OrderKACF = ...,
- ) -> recarray[Any, dtype[record]]: ...
- @overload
- def __new__(
- subtype,
- shape: _ShapeLike,
- dtype: DTypeLike,
- buf: None | _SupportsBuffer = ...,
- offset: SupportsIndex = ...,
- strides: None | _ShapeLike = ...,
- formats: None = ...,
- names: None = ...,
- titles: None = ...,
- byteorder: None = ...,
- aligned: L[False] = ...,
- order: _OrderKACF = ...,
- ) -> recarray[Any, dtype[Any]]: ...
- def __array_finalize__(self, obj: object) -> None: ...
- def __getattribute__(self, attr: str) -> Any: ...
- def __setattr__(self, attr: str, val: ArrayLike) -> None: ...
- @overload
- def __getitem__(self, indx: (
- SupportsIndex
- | _ArrayLikeInt_co
- | tuple[SupportsIndex | _ArrayLikeInt_co, ...]
- )) -> Any: ...
- @overload
- def __getitem__(self: recarray[Any, dtype[void]], indx: (
- None
- | slice
- | ellipsis
- | SupportsIndex
- | _ArrayLikeInt_co
- | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
- )) -> recarray[Any, _DType_co]: ...
- @overload
- def __getitem__(self, indx: (
- None
- | slice
- | ellipsis
- | SupportsIndex
- | _ArrayLikeInt_co
- | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
- )) -> ndarray[Any, _DType_co]: ...
- @overload
- def __getitem__(self, indx: str) -> NDArray[Any]: ...
- @overload
- def __getitem__(self, indx: list[str]) -> recarray[_ShapeType, dtype[record]]: ...
- @overload
- def field(self, attr: int | str, val: None = ...) -> Any: ...
- @overload
- def field(self, attr: int | str, val: ArrayLike) -> None: ...
- class record(void):
- def __getattribute__(self, attr: str) -> Any: ...
- def __setattr__(self, attr: str, val: ArrayLike) -> None: ...
- def pprint(self) -> str: ...
- @overload
- def __getitem__(self, key: str | SupportsIndex) -> Any: ...
- @overload
- def __getitem__(self, key: list[str]) -> record: ...
- _NDIterFlagsKind = L[
- "buffered",
- "c_index",
- "copy_if_overlap",
- "common_dtype",
- "delay_bufalloc",
- "external_loop",
- "f_index",
- "grow_inner", "growinner",
- "multi_index",
- "ranged",
- "refs_ok",
- "reduce_ok",
- "zerosize_ok",
- ]
- _NDIterOpFlagsKind = L[
- "aligned",
- "allocate",
- "arraymask",
- "copy",
- "config",
- "nbo",
- "no_subtype",
- "no_broadcast",
- "overlap_assume_elementwise",
- "readonly",
- "readwrite",
- "updateifcopy",
- "virtual",
- "writeonly",
- "writemasked"
- ]
- @final
- class nditer:
- def __new__(
- cls,
- op: ArrayLike | Sequence[ArrayLike],
- flags: None | Sequence[_NDIterFlagsKind] = ...,
- op_flags: None | Sequence[Sequence[_NDIterOpFlagsKind]] = ...,
- op_dtypes: DTypeLike | Sequence[DTypeLike] = ...,
- order: _OrderKACF = ...,
- casting: _CastingKind = ...,
- op_axes: None | Sequence[Sequence[SupportsIndex]] = ...,
- itershape: None | _ShapeLike = ...,
- buffersize: SupportsIndex = ...,
- ) -> nditer: ...
- def __enter__(self) -> nditer: ...
- def __exit__(
- self,
- exc_type: None | type[BaseException],
- exc_value: None | BaseException,
- traceback: None | TracebackType,
- ) -> None: ...
- def __iter__(self) -> nditer: ...
- def __next__(self) -> tuple[NDArray[Any], ...]: ...
- def __len__(self) -> int: ...
- def __copy__(self) -> nditer: ...
- @overload
- def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ...
- @overload
- def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ...
- def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ...
- def close(self) -> None: ...
- def copy(self) -> nditer: ...
- def debug_print(self) -> None: ...
- def enable_external_loop(self) -> None: ...
- def iternext(self) -> bool: ...
- def remove_axis(self, i: SupportsIndex, /) -> None: ...
- def remove_multi_index(self) -> None: ...
- def reset(self) -> None: ...
- @property
- def dtypes(self) -> tuple[dtype[Any], ...]: ...
- @property
- def finished(self) -> bool: ...
- @property
- def has_delayed_bufalloc(self) -> bool: ...
- @property
- def has_index(self) -> bool: ...
- @property
- def has_multi_index(self) -> bool: ...
- @property
- def index(self) -> int: ...
- @property
- def iterationneedsapi(self) -> bool: ...
- @property
- def iterindex(self) -> int: ...
- @property
- def iterrange(self) -> tuple[int, ...]: ...
- @property
- def itersize(self) -> int: ...
- @property
- def itviews(self) -> tuple[NDArray[Any], ...]: ...
- @property
- def multi_index(self) -> tuple[int, ...]: ...
- @property
- def ndim(self) -> int: ...
- @property
- def nop(self) -> int: ...
- @property
- def operands(self) -> tuple[NDArray[Any], ...]: ...
- @property
- def shape(self) -> tuple[int, ...]: ...
- @property
- def value(self) -> tuple[NDArray[Any], ...]: ...
- _MemMapModeKind = L[
- "readonly", "r",
- "copyonwrite", "c",
- "readwrite", "r+",
- "write", "w+",
- ]
- class memmap(ndarray[_ShapeType, _DType_co]):
- __array_priority__: ClassVar[float]
- filename: str | None
- offset: int
- mode: str
- @overload
- def __new__(
- subtype,
- filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
- dtype: type[uint8] = ...,
- mode: _MemMapModeKind = ...,
- offset: int = ...,
- shape: None | int | tuple[int, ...] = ...,
- order: _OrderKACF = ...,
- ) -> memmap[Any, dtype[uint8]]: ...
- @overload
- def __new__(
- subtype,
- filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
- dtype: _DTypeLike[_ScalarType],
- mode: _MemMapModeKind = ...,
- offset: int = ...,
- shape: None | int | tuple[int, ...] = ...,
- order: _OrderKACF = ...,
- ) -> memmap[Any, dtype[_ScalarType]]: ...
- @overload
- def __new__(
- subtype,
- filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol,
- dtype: DTypeLike,
- mode: _MemMapModeKind = ...,
- offset: int = ...,
- shape: None | int | tuple[int, ...] = ...,
- order: _OrderKACF = ...,
- ) -> memmap[Any, dtype[Any]]: ...
- def __array_finalize__(self, obj: object) -> None: ...
- def __array_wrap__(
- self,
- array: memmap[_ShapeType, _DType_co],
- context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
- ) -> Any: ...
- def flush(self) -> None: ...
- # TODO: Add a mypy plugin for managing functions whose output type is dependent
- # on the literal value of some sort of signature (e.g. `einsum` and `vectorize`)
- class vectorize:
- pyfunc: Callable[..., Any]
- cache: bool
- signature: None | str
- otypes: None | str
- excluded: set[int | str]
- __doc__: None | str
- def __init__(
- self,
- pyfunc: Callable[..., Any],
- otypes: None | str | Iterable[DTypeLike] = ...,
- doc: None | str = ...,
- excluded: None | Iterable[int | str] = ...,
- cache: bool = ...,
- signature: None | str = ...,
- ) -> None: ...
- def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
- class poly1d:
- @property
- def variable(self) -> str: ...
- @property
- def order(self) -> int: ...
- @property
- def o(self) -> int: ...
- @property
- def roots(self) -> NDArray[Any]: ...
- @property
- def r(self) -> NDArray[Any]: ...
- @property
- def coeffs(self) -> NDArray[Any]: ...
- @coeffs.setter
- def coeffs(self, value: NDArray[Any]) -> None: ...
- @property
- def c(self) -> NDArray[Any]: ...
- @c.setter
- def c(self, value: NDArray[Any]) -> None: ...
- @property
- def coef(self) -> NDArray[Any]: ...
- @coef.setter
- def coef(self, value: NDArray[Any]) -> None: ...
- @property
- def coefficients(self) -> NDArray[Any]: ...
- @coefficients.setter
- def coefficients(self, value: NDArray[Any]) -> None: ...
- __hash__: ClassVar[None] # type: ignore
- @overload
- def __array__(self, t: None = ...) -> NDArray[Any]: ...
- @overload
- def __array__(self, t: _DType) -> ndarray[Any, _DType]: ...
- @overload
- def __call__(self, val: _ScalarLike_co) -> Any: ...
- @overload
- def __call__(self, val: poly1d) -> poly1d: ...
- @overload
- def __call__(self, val: ArrayLike) -> NDArray[Any]: ...
- def __init__(
- self,
- c_or_r: ArrayLike,
- r: bool = ...,
- variable: None | str = ...,
- ) -> None: ...
- def __len__(self) -> int: ...
- def __neg__(self) -> poly1d: ...
- def __pos__(self) -> poly1d: ...
- def __mul__(self, other: ArrayLike) -> poly1d: ...
- def __rmul__(self, other: ArrayLike) -> poly1d: ...
- def __add__(self, other: ArrayLike) -> poly1d: ...
- def __radd__(self, other: ArrayLike) -> poly1d: ...
- def __pow__(self, val: _FloatLike_co) -> poly1d: ... # Integral floats are accepted
- def __sub__(self, other: ArrayLike) -> poly1d: ...
- def __rsub__(self, other: ArrayLike) -> poly1d: ...
- def __div__(self, other: ArrayLike) -> poly1d: ...
- def __truediv__(self, other: ArrayLike) -> poly1d: ...
- def __rdiv__(self, other: ArrayLike) -> poly1d: ...
- def __rtruediv__(self, other: ArrayLike) -> poly1d: ...
- def __getitem__(self, val: int) -> Any: ...
- def __setitem__(self, key: int, val: Any) -> None: ...
- def __iter__(self) -> Iterator[Any]: ...
- def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ...
- def integ(
- self,
- m: SupportsInt | SupportsIndex = ...,
- k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
- ) -> poly1d: ...
- class matrix(ndarray[_ShapeType, _DType_co]):
- __array_priority__: ClassVar[float]
- def __new__(
- subtype,
- data: ArrayLike,
- dtype: DTypeLike = ...,
- copy: bool = ...,
- ) -> matrix[Any, Any]: ...
- def __array_finalize__(self, obj: object) -> None: ...
- @overload
- def __getitem__(self, key: (
- SupportsIndex
- | _ArrayLikeInt_co
- | tuple[SupportsIndex | _ArrayLikeInt_co, ...]
- )) -> Any: ...
- @overload
- def __getitem__(self, key: (
- None
- | slice
- | ellipsis
- | SupportsIndex
- | _ArrayLikeInt_co
- | tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...]
- )) -> matrix[Any, _DType_co]: ...
- @overload
- def __getitem__(self: NDArray[void], key: str) -> matrix[Any, dtype[Any]]: ...
- @overload
- def __getitem__(self: NDArray[void], key: list[str]) -> matrix[_ShapeType, dtype[void]]: ...
- def __mul__(self, other: ArrayLike) -> matrix[Any, Any]: ...
- def __rmul__(self, other: ArrayLike) -> matrix[Any, Any]: ...
- def __imul__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ...
- def __pow__(self, other: ArrayLike) -> matrix[Any, Any]: ...
- def __ipow__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ...
- @overload
- def sum(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
- @overload
- def sum(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
- @overload
- def sum(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def mean(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
- @overload
- def mean(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
- @overload
- def mean(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def std(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
- @overload
- def std(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ...
- @overload
- def std(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ...
- @overload
- def var(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
- @overload
- def var(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ...
- @overload
- def var(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ...
- @overload
- def prod(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
- @overload
- def prod(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ...
- @overload
- def prod(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def any(self, axis: None = ..., out: None = ...) -> bool_: ...
- @overload
- def any(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ...
- @overload
- def any(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def all(self, axis: None = ..., out: None = ...) -> bool_: ...
- @overload
- def all(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ...
- @overload
- def all(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def max(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
- @overload
- def max(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
- @overload
- def max(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def min(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
- @overload
- def min(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
- @overload
- def min(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def argmax(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ...
- @overload
- def argmax(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ...
- @overload
- def argmax(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def argmin(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ...
- @overload
- def argmin(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ...
- @overload
- def argmin(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- @overload
- def ptp(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ...
- @overload
- def ptp(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ...
- @overload
- def ptp(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
- def squeeze(self, axis: None | _ShapeLike = ...) -> matrix[Any, _DType_co]: ...
- def tolist(self: matrix[Any, dtype[_SupportsItem[_T]]]) -> list[list[_T]]: ... # type: ignore[typevar]
- def ravel(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ...
- def flatten(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ...
- @property
- def T(self) -> matrix[Any, _DType_co]: ...
- @property
- def I(self) -> matrix[Any, Any]: ...
- @property
- def A(self) -> ndarray[_ShapeType, _DType_co]: ...
- @property
- def A1(self) -> ndarray[Any, _DType_co]: ...
- @property
- def H(self) -> matrix[Any, _DType_co]: ...
- def getT(self) -> matrix[Any, _DType_co]: ...
- def getI(self) -> matrix[Any, Any]: ...
- def getA(self) -> ndarray[_ShapeType, _DType_co]: ...
- def getA1(self) -> ndarray[Any, _DType_co]: ...
- def getH(self) -> matrix[Any, _DType_co]: ...
- _CharType = TypeVar("_CharType", str_, bytes_)
- _CharDType = TypeVar("_CharDType", dtype[str_], dtype[bytes_])
- _CharArray = chararray[Any, dtype[_CharType]]
- class chararray(ndarray[_ShapeType, _CharDType]):
- @overload
- def __new__(
- subtype,
- shape: _ShapeLike,
- itemsize: SupportsIndex | SupportsInt = ...,
- unicode: L[False] = ...,
- buffer: _SupportsBuffer = ...,
- offset: SupportsIndex = ...,
- strides: _ShapeLike = ...,
- order: _OrderKACF = ...,
- ) -> chararray[Any, dtype[bytes_]]: ...
- @overload
- def __new__(
- subtype,
- shape: _ShapeLike,
- itemsize: SupportsIndex | SupportsInt = ...,
- unicode: L[True] = ...,
- buffer: _SupportsBuffer = ...,
- offset: SupportsIndex = ...,
- strides: _ShapeLike = ...,
- order: _OrderKACF = ...,
- ) -> chararray[Any, dtype[str_]]: ...
- def __array_finalize__(self, obj: object) -> None: ...
- def __mul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
- def __rmul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
- def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ...
- @overload
- def __eq__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __eq__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __ne__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __ne__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __ge__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __ge__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __le__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __le__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __gt__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __gt__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __lt__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __lt__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> NDArray[bool_]: ...
- @overload
- def __add__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> _CharArray[str_]: ...
- @overload
- def __add__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> _CharArray[bytes_]: ...
- @overload
- def __radd__(
- self: _CharArray[str_],
- other: _ArrayLikeStr_co,
- ) -> _CharArray[str_]: ...
- @overload
- def __radd__(
- self: _CharArray[bytes_],
- other: _ArrayLikeBytes_co,
- ) -> _CharArray[bytes_]: ...
- @overload
- def center(
- self: _CharArray[str_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def center(
- self: _CharArray[bytes_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def count(
- self: _CharArray[str_],
- sub: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def count(
- self: _CharArray[bytes_],
- sub: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- def decode(
- self: _CharArray[bytes_],
- encoding: None | str = ...,
- errors: None | str = ...,
- ) -> _CharArray[str_]: ...
- def encode(
- self: _CharArray[str_],
- encoding: None | str = ...,
- errors: None | str = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def endswith(
- self: _CharArray[str_],
- suffix: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[bool_]: ...
- @overload
- def endswith(
- self: _CharArray[bytes_],
- suffix: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[bool_]: ...
- def expandtabs(
- self,
- tabsize: _ArrayLikeInt_co = ...,
- ) -> chararray[Any, _CharDType]: ...
- @overload
- def find(
- self: _CharArray[str_],
- sub: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def find(
- self: _CharArray[bytes_],
- sub: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def index(
- self: _CharArray[str_],
- sub: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def index(
- self: _CharArray[bytes_],
- sub: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def join(
- self: _CharArray[str_],
- seq: _ArrayLikeStr_co,
- ) -> _CharArray[str_]: ...
- @overload
- def join(
- self: _CharArray[bytes_],
- seq: _ArrayLikeBytes_co,
- ) -> _CharArray[bytes_]: ...
- @overload
- def ljust(
- self: _CharArray[str_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def ljust(
- self: _CharArray[bytes_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def lstrip(
- self: _CharArray[str_],
- chars: None | _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def lstrip(
- self: _CharArray[bytes_],
- chars: None | _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def partition(
- self: _CharArray[str_],
- sep: _ArrayLikeStr_co,
- ) -> _CharArray[str_]: ...
- @overload
- def partition(
- self: _CharArray[bytes_],
- sep: _ArrayLikeBytes_co,
- ) -> _CharArray[bytes_]: ...
- @overload
- def replace(
- self: _CharArray[str_],
- old: _ArrayLikeStr_co,
- new: _ArrayLikeStr_co,
- count: None | _ArrayLikeInt_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def replace(
- self: _CharArray[bytes_],
- old: _ArrayLikeBytes_co,
- new: _ArrayLikeBytes_co,
- count: None | _ArrayLikeInt_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def rfind(
- self: _CharArray[str_],
- sub: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def rfind(
- self: _CharArray[bytes_],
- sub: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def rindex(
- self: _CharArray[str_],
- sub: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def rindex(
- self: _CharArray[bytes_],
- sub: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[int_]: ...
- @overload
- def rjust(
- self: _CharArray[str_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def rjust(
- self: _CharArray[bytes_],
- width: _ArrayLikeInt_co,
- fillchar: _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def rpartition(
- self: _CharArray[str_],
- sep: _ArrayLikeStr_co,
- ) -> _CharArray[str_]: ...
- @overload
- def rpartition(
- self: _CharArray[bytes_],
- sep: _ArrayLikeBytes_co,
- ) -> _CharArray[bytes_]: ...
- @overload
- def rsplit(
- self: _CharArray[str_],
- sep: None | _ArrayLikeStr_co = ...,
- maxsplit: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[object_]: ...
- @overload
- def rsplit(
- self: _CharArray[bytes_],
- sep: None | _ArrayLikeBytes_co = ...,
- maxsplit: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[object_]: ...
- @overload
- def rstrip(
- self: _CharArray[str_],
- chars: None | _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def rstrip(
- self: _CharArray[bytes_],
- chars: None | _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def split(
- self: _CharArray[str_],
- sep: None | _ArrayLikeStr_co = ...,
- maxsplit: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[object_]: ...
- @overload
- def split(
- self: _CharArray[bytes_],
- sep: None | _ArrayLikeBytes_co = ...,
- maxsplit: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[object_]: ...
- def splitlines(self, keepends: None | _ArrayLikeBool_co = ...) -> NDArray[object_]: ...
- @overload
- def startswith(
- self: _CharArray[str_],
- prefix: _ArrayLikeStr_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[bool_]: ...
- @overload
- def startswith(
- self: _CharArray[bytes_],
- prefix: _ArrayLikeBytes_co,
- start: _ArrayLikeInt_co = ...,
- end: None | _ArrayLikeInt_co = ...,
- ) -> NDArray[bool_]: ...
- @overload
- def strip(
- self: _CharArray[str_],
- chars: None | _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def strip(
- self: _CharArray[bytes_],
- chars: None | _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- @overload
- def translate(
- self: _CharArray[str_],
- table: _ArrayLikeStr_co,
- deletechars: None | _ArrayLikeStr_co = ...,
- ) -> _CharArray[str_]: ...
- @overload
- def translate(
- self: _CharArray[bytes_],
- table: _ArrayLikeBytes_co,
- deletechars: None | _ArrayLikeBytes_co = ...,
- ) -> _CharArray[bytes_]: ...
- def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
- def capitalize(self) -> chararray[_ShapeType, _CharDType]: ...
- def title(self) -> chararray[_ShapeType, _CharDType]: ...
- def swapcase(self) -> chararray[_ShapeType, _CharDType]: ...
- def lower(self) -> chararray[_ShapeType, _CharDType]: ...
- def upper(self) -> chararray[_ShapeType, _CharDType]: ...
- def isalnum(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isalpha(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isdigit(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def islower(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isspace(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def istitle(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isupper(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isnumeric(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- def isdecimal(self) -> ndarray[_ShapeType, dtype[bool_]]: ...
- # NOTE: Deprecated
- # class MachAr: ...
- class _SupportsDLPack(Protocol[_T_contra]):
- def __dlpack__(self, *, stream: None | _T_contra = ...) -> _PyCapsule: ...
- def from_dlpack(obj: _SupportsDLPack[None], /) -> NDArray[Any]: ...
|