123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- import pytest
- np = pytest.importorskip("numpy")
- import random
- import networkx as nx
- from networkx.algorithms import approximation as approx
- from networkx.algorithms import threshold
- progress = 0
- # store the random numbers after setting a global seed
- np.random.seed(42)
- np_rv = np.random.rand()
- random.seed(42)
- py_rv = random.random()
- def t(f, *args, **kwds):
- """call one function and check if global RNG changed"""
- global progress
- progress += 1
- print(progress, ",", end="")
- f(*args, **kwds)
- after_np_rv = np.random.rand()
- # if np_rv != after_np_rv:
- # print(np_rv, after_np_rv, "don't match np!")
- assert np_rv == after_np_rv
- np.random.seed(42)
- after_py_rv = random.random()
- # if py_rv != after_py_rv:
- # print(py_rv, after_py_rv, "don't match py!")
- assert py_rv == after_py_rv
- random.seed(42)
- def run_all_random_functions(seed):
- n = 20
- m = 10
- k = l = 2
- s = v = 10
- p = q = p1 = p2 = p_in = p_out = 0.4
- alpha = radius = theta = 0.75
- sizes = (20, 20, 10)
- colors = [1, 2, 3]
- G = nx.barbell_graph(12, 20)
- H = nx.cycle_graph(3)
- H.add_weighted_edges_from((u, v, 0.2) for u, v in H.edges)
- deg_sequence = [3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1]
- in_degree_sequence = w = sequence = aseq = bseq = deg_sequence
- # print("starting...")
- t(nx.maximal_independent_set, G, seed=seed)
- t(nx.rich_club_coefficient, G, seed=seed, normalized=False)
- t(nx.random_reference, G, seed=seed)
- t(nx.lattice_reference, G, seed=seed)
- t(nx.sigma, G, 1, 2, seed=seed)
- t(nx.omega, G, 1, 2, seed=seed)
- # print("out of smallworld.py")
- t(nx.double_edge_swap, G, seed=seed)
- # print("starting connected_double_edge_swap")
- t(nx.connected_double_edge_swap, nx.complete_graph(9), seed=seed)
- # print("ending connected_double_edge_swap")
- t(nx.random_layout, G, seed=seed)
- t(nx.fruchterman_reingold_layout, G, seed=seed)
- t(nx.algebraic_connectivity, G, seed=seed)
- t(nx.fiedler_vector, G, seed=seed)
- t(nx.spectral_ordering, G, seed=seed)
- # print('starting average_clustering')
- t(approx.average_clustering, G, seed=seed)
- t(approx.simulated_annealing_tsp, H, "greedy", source=1, seed=seed)
- t(approx.threshold_accepting_tsp, H, "greedy", source=1, seed=seed)
- t(
- approx.traveling_salesman_problem,
- H,
- method=lambda G, wt: approx.simulated_annealing_tsp(G, "greedy", wt, seed=seed),
- )
- t(
- approx.traveling_salesman_problem,
- H,
- method=lambda G, wt: approx.threshold_accepting_tsp(G, "greedy", wt, seed=seed),
- )
- t(nx.betweenness_centrality, G, seed=seed)
- t(nx.edge_betweenness_centrality, G, seed=seed)
- t(nx.approximate_current_flow_betweenness_centrality, G, seed=seed)
- # print("kernighan")
- t(nx.algorithms.community.kernighan_lin_bisection, G, seed=seed)
- # nx.algorithms.community.asyn_lpa_communities(G, seed=seed)
- t(nx.algorithms.tree.greedy_branching, G, seed=seed)
- t(nx.algorithms.tree.Edmonds, G, seed=seed)
- # print('done with graph argument functions')
- t(nx.spectral_graph_forge, G, alpha, seed=seed)
- t(nx.algorithms.community.asyn_fluidc, G, k, max_iter=1, seed=seed)
- t(
- nx.algorithms.connectivity.edge_augmentation.greedy_k_edge_augmentation,
- G,
- k,
- seed=seed,
- )
- t(nx.algorithms.coloring.strategy_random_sequential, G, colors, seed=seed)
- cs = ["d", "i", "i", "d", "d", "i"]
- t(threshold.swap_d, cs, seed=seed)
- t(nx.configuration_model, deg_sequence, seed=seed)
- t(
- nx.directed_configuration_model,
- in_degree_sequence,
- in_degree_sequence,
- seed=seed,
- )
- t(nx.expected_degree_graph, w, seed=seed)
- t(nx.random_degree_sequence_graph, sequence, seed=seed)
- joint_degrees = {
- 1: {4: 1},
- 2: {2: 2, 3: 2, 4: 2},
- 3: {2: 2, 4: 1},
- 4: {1: 1, 2: 2, 3: 1},
- }
- t(nx.joint_degree_graph, joint_degrees, seed=seed)
- joint_degree_sequence = [
- (1, 0),
- (1, 0),
- (1, 0),
- (2, 0),
- (1, 0),
- (2, 1),
- (0, 1),
- (0, 1),
- ]
- t(nx.random_clustered_graph, joint_degree_sequence, seed=seed)
- constructor = [(3, 3, 0.5), (10, 10, 0.7)]
- t(nx.random_shell_graph, constructor, seed=seed)
- t(nx.random_triad, G.to_directed(), seed=seed)
- mapping = {1: 0.4, 2: 0.3, 3: 0.3}
- t(nx.utils.random_weighted_sample, mapping, k, seed=seed)
- t(nx.utils.weighted_choice, mapping, seed=seed)
- t(nx.algorithms.bipartite.configuration_model, aseq, bseq, seed=seed)
- t(nx.algorithms.bipartite.preferential_attachment_graph, aseq, p, seed=seed)
- def kernel_integral(u, w, z):
- return z - w
- t(nx.random_kernel_graph, n, kernel_integral, seed=seed)
- sizes = [75, 75, 300]
- probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
- t(nx.stochastic_block_model, sizes, probs, seed=seed)
- t(nx.random_partition_graph, sizes, p_in, p_out, seed=seed)
- # print("starting generator functions")
- t(threshold.random_threshold_sequence, n, p, seed=seed)
- t(nx.tournament.random_tournament, n, seed=seed)
- t(nx.relaxed_caveman_graph, l, k, p, seed=seed)
- t(nx.planted_partition_graph, l, k, p_in, p_out, seed=seed)
- t(nx.gaussian_random_partition_graph, n, s, v, p_in, p_out, seed=seed)
- t(nx.gn_graph, n, seed=seed)
- t(nx.gnr_graph, n, p, seed=seed)
- t(nx.gnc_graph, n, seed=seed)
- t(nx.scale_free_graph, n, seed=seed)
- t(nx.directed.random_uniform_k_out_graph, n, k, seed=seed)
- t(nx.random_k_out_graph, n, k, alpha, seed=seed)
- N = 1000
- t(nx.partial_duplication_graph, N, n, p, q, seed=seed)
- t(nx.duplication_divergence_graph, n, p, seed=seed)
- t(nx.random_geometric_graph, n, radius, seed=seed)
- t(nx.soft_random_geometric_graph, n, radius, seed=seed)
- t(nx.geographical_threshold_graph, n, theta, seed=seed)
- t(nx.waxman_graph, n, seed=seed)
- t(nx.navigable_small_world_graph, n, seed=seed)
- t(nx.thresholded_random_geometric_graph, n, radius, theta, seed=seed)
- t(nx.uniform_random_intersection_graph, n, m, p, seed=seed)
- t(nx.k_random_intersection_graph, n, m, k, seed=seed)
- t(nx.general_random_intersection_graph, n, 2, [0.1, 0.5], seed=seed)
- t(nx.fast_gnp_random_graph, n, p, seed=seed)
- t(nx.gnp_random_graph, n, p, seed=seed)
- t(nx.dense_gnm_random_graph, n, m, seed=seed)
- t(nx.gnm_random_graph, n, m, seed=seed)
- t(nx.newman_watts_strogatz_graph, n, k, p, seed=seed)
- t(nx.watts_strogatz_graph, n, k, p, seed=seed)
- t(nx.connected_watts_strogatz_graph, n, k, p, seed=seed)
- t(nx.random_regular_graph, 3, n, seed=seed)
- t(nx.barabasi_albert_graph, n, m, seed=seed)
- t(nx.extended_barabasi_albert_graph, n, m, p, q, seed=seed)
- t(nx.powerlaw_cluster_graph, n, m, p, seed=seed)
- t(nx.random_lobster, n, p1, p2, seed=seed)
- t(nx.random_powerlaw_tree, n, seed=seed, tries=5000)
- t(nx.random_powerlaw_tree_sequence, 10, seed=seed, tries=5000)
- t(nx.random_tree, n, seed=seed)
- t(nx.utils.powerlaw_sequence, n, seed=seed)
- t(nx.utils.zipf_rv, 2.3, seed=seed)
- cdist = [0.2, 0.4, 0.5, 0.7, 0.9, 1.0]
- t(nx.utils.discrete_sequence, n, cdistribution=cdist, seed=seed)
- t(nx.algorithms.bipartite.random_graph, n, m, p, seed=seed)
- t(nx.algorithms.bipartite.gnmk_random_graph, n, m, k, seed=seed)
- LFR = nx.generators.LFR_benchmark_graph
- t(
- LFR,
- 25,
- 3,
- 1.5,
- 0.1,
- average_degree=3,
- min_community=10,
- seed=seed,
- max_community=20,
- )
- t(nx.random_internet_as_graph, n, seed=seed)
- # print("done")
- # choose to test an integer seed, or whether a single RNG can be everywhere
- # np_rng = np.random.RandomState(14)
- # seed = np_rng
- # seed = 14
- @pytest.mark.slow
- # print("NetworkX Version:", nx.__version__)
- def test_rng_interface():
- global progress
- # try different kinds of seeds
- for seed in [14, np.random.RandomState(14)]:
- np.random.seed(42)
- random.seed(42)
- run_all_random_functions(seed)
- progress = 0
- # check that both global RNGs are unaffected
- after_np_rv = np.random.rand()
- # if np_rv != after_np_rv:
- # print(np_rv, after_np_rv, "don't match np!")
- assert np_rv == after_np_rv
- after_py_rv = random.random()
- # if py_rv != after_py_rv:
- # print(py_rv, after_py_rv, "don't match py!")
- assert py_rv == after_py_rv
- # print("\nDone testing seed:", seed)
- # test_rng_interface()
|