123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- """Modularity matrix of graphs.
- """
- import networkx as nx
- from networkx.utils import not_implemented_for
- __all__ = ["modularity_matrix", "directed_modularity_matrix"]
- @not_implemented_for("directed")
- @not_implemented_for("multigraph")
- def modularity_matrix(G, nodelist=None, weight=None):
- r"""Returns the modularity matrix of G.
- The modularity matrix is the matrix B = A - <A>, where A is the adjacency
- matrix and <A> is the average adjacency matrix, assuming that the graph
- is described by the configuration model.
- More specifically, the element B_ij of B is defined as
- .. math::
- A_{ij} - {k_i k_j \over 2 m}
- where k_i is the degree of node i, and where m is the number of edges
- in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
- k_j and m are computed using its value.
- Parameters
- ----------
- G : Graph
- A NetworkX graph
- nodelist : list, optional
- The rows and columns are ordered according to the nodes in nodelist.
- If nodelist is None, then the ordering is produced by G.nodes().
- weight : string or None, optional (default=None)
- The edge attribute that holds the numerical value used for
- the edge weight. If None then all edge weights are 1.
- Returns
- -------
- B : Numpy array
- The modularity matrix of G.
- Examples
- --------
- >>> k = [3, 2, 2, 1, 0]
- >>> G = nx.havel_hakimi_graph(k)
- >>> B = nx.modularity_matrix(G)
- See Also
- --------
- to_numpy_array
- modularity_spectrum
- adjacency_matrix
- directed_modularity_matrix
- References
- ----------
- .. [1] M. E. J. Newman, "Modularity and community structure in networks",
- Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
- """
- import numpy as np
- if nodelist is None:
- nodelist = list(G)
- A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
- k = A.sum(axis=1)
- m = k.sum() * 0.5
- # Expected adjacency matrix
- X = np.outer(k, k) / (2 * m)
- return A - X
- @not_implemented_for("undirected")
- @not_implemented_for("multigraph")
- def directed_modularity_matrix(G, nodelist=None, weight=None):
- """Returns the directed modularity matrix of G.
- The modularity matrix is the matrix B = A - <A>, where A is the adjacency
- matrix and <A> is the expected adjacency matrix, assuming that the graph
- is described by the configuration model.
- More specifically, the element B_ij of B is defined as
- .. math::
- B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m
- where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
- of node j, with m the number of edges in the graph. When weight is set
- to a name of an attribute edge, Aij, k_i, k_j and m are computed using
- its value.
- Parameters
- ----------
- G : DiGraph
- A NetworkX DiGraph
- nodelist : list, optional
- The rows and columns are ordered according to the nodes in nodelist.
- If nodelist is None, then the ordering is produced by G.nodes().
- weight : string or None, optional (default=None)
- The edge attribute that holds the numerical value used for
- the edge weight. If None then all edge weights are 1.
- Returns
- -------
- B : Numpy array
- The modularity matrix of G.
- Examples
- --------
- >>> G = nx.DiGraph()
- >>> G.add_edges_from(
- ... (
- ... (1, 2),
- ... (1, 3),
- ... (3, 1),
- ... (3, 2),
- ... (3, 5),
- ... (4, 5),
- ... (4, 6),
- ... (5, 4),
- ... (5, 6),
- ... (6, 4),
- ... )
- ... )
- >>> B = nx.directed_modularity_matrix(G)
- Notes
- -----
- NetworkX defines the element A_ij of the adjacency matrix as 1 if there
- is a link going from node i to node j. Leicht and Newman use the opposite
- definition. This explains the different expression for B_ij.
- See Also
- --------
- to_numpy_array
- modularity_spectrum
- adjacency_matrix
- modularity_matrix
- References
- ----------
- .. [1] E. A. Leicht, M. E. J. Newman,
- "Community structure in directed networks",
- Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
- """
- import numpy as np
- if nodelist is None:
- nodelist = list(G)
- A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
- k_in = A.sum(axis=0)
- k_out = A.sum(axis=1)
- m = k_in.sum()
- # Expected adjacency matrix
- X = np.outer(k_out, k_in) / m
- return A - X
|