123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- import pytest
- import networkx as nx
- from networkx.generators import line
- from networkx.utils import edges_equal
- class TestGeneratorLine:
- def test_star(self):
- G = nx.star_graph(5)
- L = nx.line_graph(G)
- assert nx.is_isomorphic(L, nx.complete_graph(5))
- def test_path(self):
- G = nx.path_graph(5)
- L = nx.line_graph(G)
- assert nx.is_isomorphic(L, nx.path_graph(4))
- def test_cycle(self):
- G = nx.cycle_graph(5)
- L = nx.line_graph(G)
- assert nx.is_isomorphic(L, G)
- def test_digraph1(self):
- G = nx.DiGraph([(0, 1), (0, 2), (0, 3)])
- L = nx.line_graph(G)
- # no edge graph, but with nodes
- assert L.adj == {(0, 1): {}, (0, 2): {}, (0, 3): {}}
- def test_multigraph1(self):
- G = nx.MultiGraph([(0, 1), (0, 1), (1, 0), (0, 2), (2, 0), (0, 3)])
- L = nx.line_graph(G)
- # no edge graph, but with nodes
- assert edges_equal(
- L.edges(),
- [
- ((0, 3, 0), (0, 1, 0)),
- ((0, 3, 0), (0, 2, 0)),
- ((0, 3, 0), (0, 2, 1)),
- ((0, 3, 0), (0, 1, 1)),
- ((0, 3, 0), (0, 1, 2)),
- ((0, 1, 0), (0, 1, 1)),
- ((0, 1, 0), (0, 2, 0)),
- ((0, 1, 0), (0, 1, 2)),
- ((0, 1, 0), (0, 2, 1)),
- ((0, 1, 1), (0, 1, 2)),
- ((0, 1, 1), (0, 2, 0)),
- ((0, 1, 1), (0, 2, 1)),
- ((0, 1, 2), (0, 2, 0)),
- ((0, 1, 2), (0, 2, 1)),
- ((0, 2, 0), (0, 2, 1)),
- ],
- )
- def test_multigraph2(self):
- G = nx.MultiGraph([(1, 2), (2, 1)])
- L = nx.line_graph(G)
- assert edges_equal(L.edges(), [((1, 2, 0), (1, 2, 1))])
- def test_multidigraph1(self):
- G = nx.MultiDiGraph([(1, 2), (2, 1)])
- L = nx.line_graph(G)
- assert edges_equal(L.edges(), [((1, 2, 0), (2, 1, 0)), ((2, 1, 0), (1, 2, 0))])
- def test_multidigraph2(self):
- G = nx.MultiDiGraph([(0, 1), (0, 1), (0, 1), (1, 2)])
- L = nx.line_graph(G)
- assert edges_equal(
- L.edges(),
- [((0, 1, 0), (1, 2, 0)), ((0, 1, 1), (1, 2, 0)), ((0, 1, 2), (1, 2, 0))],
- )
- def test_digraph2(self):
- G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
- L = nx.line_graph(G)
- assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
- def test_create1(self):
- G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
- L = nx.line_graph(G, create_using=nx.Graph())
- assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
- def test_create2(self):
- G = nx.Graph([(0, 1), (1, 2), (2, 3)])
- L = nx.line_graph(G, create_using=nx.DiGraph())
- assert edges_equal(L.edges(), [((0, 1), (1, 2)), ((1, 2), (2, 3))])
- class TestGeneratorInverseLine:
- def test_example(self):
- G = nx.Graph()
- G_edges = [
- [1, 2],
- [1, 3],
- [1, 4],
- [1, 5],
- [2, 3],
- [2, 5],
- [2, 6],
- [2, 7],
- [3, 4],
- [3, 5],
- [6, 7],
- [6, 8],
- [7, 8],
- ]
- G.add_edges_from(G_edges)
- H = nx.inverse_line_graph(G)
- solution = nx.Graph()
- solution_edges = [
- ("a", "b"),
- ("a", "c"),
- ("a", "d"),
- ("a", "e"),
- ("c", "d"),
- ("e", "f"),
- ("e", "g"),
- ("f", "g"),
- ]
- solution.add_edges_from(solution_edges)
- assert nx.is_isomorphic(H, solution)
- def test_example_2(self):
- G = nx.Graph()
- G_edges = [[1, 2], [1, 3], [2, 3], [3, 4], [3, 5], [4, 5]]
- G.add_edges_from(G_edges)
- H = nx.inverse_line_graph(G)
- solution = nx.Graph()
- solution_edges = [("a", "c"), ("b", "c"), ("c", "d"), ("d", "e"), ("d", "f")]
- solution.add_edges_from(solution_edges)
- assert nx.is_isomorphic(H, solution)
- def test_pair(self):
- G = nx.path_graph(2)
- H = nx.inverse_line_graph(G)
- solution = nx.path_graph(3)
- assert nx.is_isomorphic(H, solution)
- def test_line(self):
- G = nx.path_graph(5)
- solution = nx.path_graph(6)
- H = nx.inverse_line_graph(G)
- assert nx.is_isomorphic(H, solution)
- def test_triangle_graph(self):
- G = nx.complete_graph(3)
- H = nx.inverse_line_graph(G)
- alternative_solution = nx.Graph()
- alternative_solution.add_edges_from([[0, 1], [0, 2], [0, 3]])
- # there are two alternative inverse line graphs for this case
- # so long as we get one of them the test should pass
- assert nx.is_isomorphic(H, G) or nx.is_isomorphic(H, alternative_solution)
- def test_cycle(self):
- G = nx.cycle_graph(5)
- H = nx.inverse_line_graph(G)
- assert nx.is_isomorphic(H, G)
- def test_empty(self):
- G = nx.Graph()
- H = nx.inverse_line_graph(G)
- assert nx.is_isomorphic(H, nx.complete_graph(1))
- def test_K1(self):
- G = nx.complete_graph(1)
- H = nx.inverse_line_graph(G)
- solution = nx.path_graph(2)
- assert nx.is_isomorphic(H, solution)
- def test_edgeless_graph(self):
- G = nx.empty_graph(5)
- with pytest.raises(nx.NetworkXError, match="edgeless graph"):
- nx.inverse_line_graph(G)
- def test_selfloops_error(self):
- G = nx.cycle_graph(4)
- G.add_edge(0, 0)
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- def test_non_line_graphs(self):
- # Tests several known non-line graphs for impossibility
- # Adapted from L.W.Beineke, "Characterizations of derived graphs"
- # claw graph
- claw = nx.star_graph(3)
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, claw)
- # wheel graph with 6 nodes
- wheel = nx.wheel_graph(6)
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, wheel)
- # K5 with one edge remove
- K5m = nx.complete_graph(5)
- K5m.remove_edge(0, 1)
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, K5m)
- # graph without any odd triangles (contains claw as induced subgraph)
- G = nx.compose(nx.path_graph(2), nx.complete_bipartite_graph(2, 3))
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- ## Variations on a diamond graph
- # Diamond + 2 edges (+ "roof")
- G = nx.diamond_graph()
- G.add_edges_from([(4, 0), (5, 3)])
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- G.add_edge(4, 5)
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- # Diamond + 2 connected edges
- G = nx.diamond_graph()
- G.add_edges_from([(4, 0), (4, 3)])
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- # Diamond + K3 + one edge (+ 2*K3)
- G = nx.diamond_graph()
- G.add_edges_from([(4, 0), (4, 1), (4, 2), (5, 3)])
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- G.add_edges_from([(5, 1), (5, 2)])
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- # 4 triangles
- G = nx.diamond_graph()
- G.add_edges_from([(4, 0), (4, 1), (5, 2), (5, 3)])
- pytest.raises(nx.NetworkXError, nx.inverse_line_graph, G)
- def test_wrong_graph_type(self):
- G = nx.DiGraph()
- G_edges = [[0, 1], [0, 2], [0, 3]]
- G.add_edges_from(G_edges)
- pytest.raises(nx.NetworkXNotImplemented, nx.inverse_line_graph, G)
- G = nx.MultiGraph()
- G_edges = [[0, 1], [0, 2], [0, 3]]
- G.add_edges_from(G_edges)
- pytest.raises(nx.NetworkXNotImplemented, nx.inverse_line_graph, G)
- def test_line_inverse_line_complete(self):
- G = nx.complete_graph(10)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_path(self):
- G = nx.path_graph(10)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_hypercube(self):
- G = nx.hypercube_graph(5)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_cycle(self):
- G = nx.cycle_graph(10)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_star(self):
- G = nx.star_graph(20)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_multipartite(self):
- G = nx.complete_multipartite_graph(3, 4, 5)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_inverse_line_dgm(self):
- G = nx.dorogovtsev_goltsev_mendes_graph(4)
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- def test_line_different_node_types(self):
- G = nx.path_graph([1, 2, 3, "a", "b", "c"])
- H = nx.line_graph(G)
- J = nx.inverse_line_graph(H)
- assert nx.is_isomorphic(G, J)
- class TestGeneratorPrivateFunctions:
- def test_triangles_error(self):
- G = nx.diamond_graph()
- pytest.raises(nx.NetworkXError, line._triangles, G, (4, 0))
- pytest.raises(nx.NetworkXError, line._triangles, G, (0, 3))
- def test_odd_triangles_error(self):
- G = nx.diamond_graph()
- pytest.raises(nx.NetworkXError, line._odd_triangle, G, (0, 1, 4))
- pytest.raises(nx.NetworkXError, line._odd_triangle, G, (0, 1, 3))
- def test_select_starting_cell_error(self):
- G = nx.diamond_graph()
- pytest.raises(nx.NetworkXError, line._select_starting_cell, G, (4, 0))
- pytest.raises(nx.NetworkXError, line._select_starting_cell, G, (0, 3))
- def test_diamond_graph(self):
- G = nx.diamond_graph()
- for edge in G.edges:
- cell = line._select_starting_cell(G, starting_edge=edge)
- # Starting cell should always be one of the two triangles
- assert len(cell) == 3
- assert all(v in G[u] for u in cell for v in cell if u != v)
|