123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559 |
- """
- ====================
- Generators - Classic
- ====================
- Unit tests for various classic graph generators in generators/classic.py
- """
- import itertools
- import typing
- import pytest
- import networkx as nx
- from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
- from networkx.utils import edges_equal, nodes_equal
- is_isomorphic = graph_could_be_isomorphic
- class TestGeneratorClassic:
- def test_balanced_tree(self):
- # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
- for r, h in [(2, 2), (3, 3), (6, 2)]:
- t = nx.balanced_tree(r, h)
- order = t.order()
- assert order == (r ** (h + 1) - 1) / (r - 1)
- assert nx.is_connected(t)
- assert t.size() == order - 1
- dh = nx.degree_histogram(t)
- assert dh[0] == 0 # no nodes of 0
- assert dh[1] == r**h # nodes of degree 1 are leaves
- assert dh[r] == 1 # root is degree r
- assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
- assert len(dh) == r + 2
- def test_balanced_tree_star(self):
- # balanced_tree(r,1) is the r-star
- t = nx.balanced_tree(r=2, h=1)
- assert is_isomorphic(t, nx.star_graph(2))
- t = nx.balanced_tree(r=5, h=1)
- assert is_isomorphic(t, nx.star_graph(5))
- t = nx.balanced_tree(r=10, h=1)
- assert is_isomorphic(t, nx.star_graph(10))
- def test_balanced_tree_path(self):
- """Tests that the balanced tree with branching factor one is the
- path graph.
- """
- # A tree of height four has five levels.
- T = nx.balanced_tree(1, 4)
- P = nx.path_graph(5)
- assert is_isomorphic(T, P)
- def test_full_rary_tree(self):
- r = 2
- n = 9
- t = nx.full_rary_tree(r, n)
- assert t.order() == n
- assert nx.is_connected(t)
- dh = nx.degree_histogram(t)
- assert dh[0] == 0 # no nodes of 0
- assert dh[1] == 5 # nodes of degree 1 are leaves
- assert dh[r] == 1 # root is degree r
- assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
- assert len(dh) == r + 2
- def test_full_rary_tree_balanced(self):
- t = nx.full_rary_tree(2, 15)
- th = nx.balanced_tree(2, 3)
- assert is_isomorphic(t, th)
- def test_full_rary_tree_path(self):
- t = nx.full_rary_tree(1, 10)
- assert is_isomorphic(t, nx.path_graph(10))
- def test_full_rary_tree_empty(self):
- t = nx.full_rary_tree(0, 10)
- assert is_isomorphic(t, nx.empty_graph(10))
- t = nx.full_rary_tree(3, 0)
- assert is_isomorphic(t, nx.empty_graph(0))
- def test_full_rary_tree_3_20(self):
- t = nx.full_rary_tree(3, 20)
- assert t.order() == 20
- def test_barbell_graph(self):
- # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
- # number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
- m1 = 3
- m2 = 5
- b = nx.barbell_graph(m1, m2)
- assert nx.number_of_nodes(b) == 2 * m1 + m2
- assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
- m1 = 4
- m2 = 10
- b = nx.barbell_graph(m1, m2)
- assert nx.number_of_nodes(b) == 2 * m1 + m2
- assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
- m1 = 3
- m2 = 20
- b = nx.barbell_graph(m1, m2)
- assert nx.number_of_nodes(b) == 2 * m1 + m2
- assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
- # Raise NetworkXError if m1<2
- m1 = 1
- m2 = 20
- pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
- # Raise NetworkXError if m2<0
- m1 = 5
- m2 = -2
- pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
- # nx.barbell_graph(2,m) = nx.path_graph(m+4)
- m1 = 2
- m2 = 5
- b = nx.barbell_graph(m1, m2)
- assert is_isomorphic(b, nx.path_graph(m2 + 4))
- m1 = 2
- m2 = 10
- b = nx.barbell_graph(m1, m2)
- assert is_isomorphic(b, nx.path_graph(m2 + 4))
- m1 = 2
- m2 = 20
- b = nx.barbell_graph(m1, m2)
- assert is_isomorphic(b, nx.path_graph(m2 + 4))
- pytest.raises(
- nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
- )
- mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
- assert edges_equal(mb.edges(), b.edges())
- def test_binomial_tree(self):
- graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
- for create_using in graphs:
- for n in range(0, 4):
- b = nx.binomial_tree(n, create_using)
- assert nx.number_of_nodes(b) == 2**n
- assert nx.number_of_edges(b) == (2**n - 1)
- def test_complete_graph(self):
- # complete_graph(m) is a connected graph with
- # m nodes and m*(m+1)/2 edges
- for m in [0, 1, 3, 5]:
- g = nx.complete_graph(m)
- assert nx.number_of_nodes(g) == m
- assert nx.number_of_edges(g) == m * (m - 1) // 2
- mg = nx.complete_graph(m, create_using=nx.MultiGraph)
- assert edges_equal(mg.edges(), g.edges())
- g = nx.complete_graph("abc")
- assert nodes_equal(g.nodes(), ["a", "b", "c"])
- assert g.size() == 3
- # creates a self-loop... should it? <backward compatible says yes>
- g = nx.complete_graph("abcb")
- assert nodes_equal(g.nodes(), ["a", "b", "c"])
- assert g.size() == 4
- g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
- assert nodes_equal(g.nodes(), ["a", "b", "c"])
- assert g.size() == 6
- def test_complete_digraph(self):
- # complete_graph(m) is a connected graph with
- # m nodes and m*(m+1)/2 edges
- for m in [0, 1, 3, 5]:
- g = nx.complete_graph(m, create_using=nx.DiGraph)
- assert nx.number_of_nodes(g) == m
- assert nx.number_of_edges(g) == m * (m - 1)
- g = nx.complete_graph("abc", create_using=nx.DiGraph)
- assert len(g) == 3
- assert g.size() == 6
- assert g.is_directed()
- def test_circular_ladder_graph(self):
- G = nx.circular_ladder_graph(5)
- pytest.raises(
- nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
- )
- mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
- assert edges_equal(mG.edges(), G.edges())
- def test_circulant_graph(self):
- # Ci_n(1) is the cycle graph for all n
- Ci6_1 = nx.circulant_graph(6, [1])
- C6 = nx.cycle_graph(6)
- assert edges_equal(Ci6_1.edges(), C6.edges())
- # Ci_n(1, 2, ..., n div 2) is the complete graph for all n
- Ci7 = nx.circulant_graph(7, [1, 2, 3])
- K7 = nx.complete_graph(7)
- assert edges_equal(Ci7.edges(), K7.edges())
- # Ci_6(1, 3) is K_3,3 i.e. the utility graph
- Ci6_1_3 = nx.circulant_graph(6, [1, 3])
- K3_3 = nx.complete_bipartite_graph(3, 3)
- assert is_isomorphic(Ci6_1_3, K3_3)
- def test_cycle_graph(self):
- G = nx.cycle_graph(4)
- assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
- mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
- assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
- G = nx.cycle_graph(4, create_using=nx.DiGraph)
- assert not G.has_edge(2, 1)
- assert G.has_edge(1, 2)
- assert G.is_directed()
- G = nx.cycle_graph("abc")
- assert len(G) == 3
- assert G.size() == 3
- G = nx.cycle_graph("abcb")
- assert len(G) == 3
- assert G.size() == 2
- g = nx.cycle_graph("abc", nx.DiGraph)
- assert len(g) == 3
- assert g.size() == 3
- assert g.is_directed()
- g = nx.cycle_graph("abcb", nx.DiGraph)
- assert len(g) == 3
- assert g.size() == 4
- def test_dorogovtsev_goltsev_mendes_graph(self):
- G = nx.dorogovtsev_goltsev_mendes_graph(0)
- assert edges_equal(G.edges(), [(0, 1)])
- assert nodes_equal(list(G), [0, 1])
- G = nx.dorogovtsev_goltsev_mendes_graph(1)
- assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
- assert nx.average_clustering(G) == 1.0
- assert sorted(nx.triangles(G).values()) == [1, 1, 1]
- G = nx.dorogovtsev_goltsev_mendes_graph(10)
- assert nx.number_of_nodes(G) == 29526
- assert nx.number_of_edges(G) == 59049
- assert G.degree(0) == 1024
- assert G.degree(1) == 1024
- assert G.degree(2) == 1024
- pytest.raises(
- nx.NetworkXError,
- nx.dorogovtsev_goltsev_mendes_graph,
- 7,
- create_using=nx.DiGraph,
- )
- pytest.raises(
- nx.NetworkXError,
- nx.dorogovtsev_goltsev_mendes_graph,
- 7,
- create_using=nx.MultiGraph,
- )
- def test_create_using(self):
- G = nx.empty_graph()
- assert isinstance(G, nx.Graph)
- pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
- pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
- G = nx.empty_graph(create_using=nx.MultiGraph)
- assert isinstance(G, nx.MultiGraph)
- G = nx.empty_graph(create_using=nx.DiGraph)
- assert isinstance(G, nx.DiGraph)
- G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
- assert isinstance(G, nx.DiGraph)
- G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
- assert isinstance(G, nx.MultiGraph)
- G = nx.empty_graph(default=nx.MultiGraph)
- assert isinstance(G, nx.MultiGraph)
- G = nx.path_graph(5)
- H = nx.empty_graph(create_using=G)
- assert not H.is_multigraph()
- assert not H.is_directed()
- assert len(H) == 0
- assert G is H
- H = nx.empty_graph(create_using=nx.MultiGraph())
- assert H.is_multigraph()
- assert not H.is_directed()
- assert G is not H
- # test for subclasses that also use typing.Protocol. See gh-6243
- class Mixin(typing.Protocol):
- pass
- class MyGraph(Mixin, nx.DiGraph):
- pass
- G = nx.empty_graph(create_using=MyGraph)
- def test_empty_graph(self):
- G = nx.empty_graph()
- assert nx.number_of_nodes(G) == 0
- G = nx.empty_graph(42)
- assert nx.number_of_nodes(G) == 42
- assert nx.number_of_edges(G) == 0
- G = nx.empty_graph("abc")
- assert len(G) == 3
- assert G.size() == 0
- # create empty digraph
- G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
- assert nx.number_of_nodes(G) == 42
- assert nx.number_of_edges(G) == 0
- assert isinstance(G, nx.DiGraph)
- # create empty multigraph
- G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
- assert nx.number_of_nodes(G) == 42
- assert nx.number_of_edges(G) == 0
- assert isinstance(G, nx.MultiGraph)
- # create empty graph from another
- pete = nx.petersen_graph()
- G = nx.empty_graph(42, create_using=pete)
- assert nx.number_of_nodes(G) == 42
- assert nx.number_of_edges(G) == 0
- assert isinstance(G, nx.Graph)
- def test_ladder_graph(self):
- for i, G in [
- (0, nx.empty_graph(0)),
- (1, nx.path_graph(2)),
- (2, nx.hypercube_graph(2)),
- (10, nx.grid_graph([2, 10])),
- ]:
- assert is_isomorphic(nx.ladder_graph(i), G)
- pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
- g = nx.ladder_graph(2)
- mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
- assert edges_equal(mg.edges(), g.edges())
- def test_lollipop_graph_right_sizes(self):
- # number of nodes = m1 + m2
- # number of edges = nx.number_of_edges(nx.complete_graph(m1)) + m2
- for m1, m2 in [(3, 5), (4, 10), (3, 20)]:
- G = nx.lollipop_graph(m1, m2)
- assert nx.number_of_nodes(G) == m1 + m2
- assert nx.number_of_edges(G) == m1 * (m1 - 1) / 2 + m2
- for first, second in [("ab", ""), ("abc", "defg")]:
- m1, m2 = len(first), len(second)
- G = nx.lollipop_graph(first, second)
- assert nx.number_of_nodes(G) == m1 + m2
- assert nx.number_of_edges(G) == m1 * (m1 - 1) / 2 + m2
- def test_lollipop_graph_exceptions(self):
- # Raise NetworkXError if m<2
- pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
- pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
- pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
- pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
- # Raise NetworkXError if n<0
- pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
- # raise NetworkXError if create_using is directed
- with pytest.raises(nx.NetworkXError):
- nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
- with pytest.raises(nx.NetworkXError):
- nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
- def test_lollipop_graph_same_as_path_when_m1_is_2(self):
- # lollipop_graph(2,m) = path_graph(m+2)
- for m1, m2 in [(2, 0), (2, 5), (2, 10), ("ab", 20)]:
- G = nx.lollipop_graph(m1, m2)
- assert is_isomorphic(G, nx.path_graph(m2 + 2))
- def test_lollipop_graph_for_multigraph(self):
- G = nx.lollipop_graph(5, 20)
- MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
- assert edges_equal(MG.edges(), G.edges())
- def test_lollipop_graph_mixing_input_types(self):
- cases = [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])]
- for m1, m2 in cases:
- G = nx.lollipop_graph(m1, m2)
- assert len(G) == 7
- assert G.size() == 9
- def test_lollipop_graph_not_int_integer_inputs(self):
- # test non-int integers
- np = pytest.importorskip("numpy")
- G = nx.lollipop_graph(np.int32(4), np.int64(3))
- assert len(G) == 7
- assert G.size() == 9
- def test_null_graph(self):
- assert nx.number_of_nodes(nx.null_graph()) == 0
- def test_path_graph(self):
- p = nx.path_graph(0)
- assert is_isomorphic(p, nx.null_graph())
- p = nx.path_graph(1)
- assert is_isomorphic(p, nx.empty_graph(1))
- p = nx.path_graph(10)
- assert nx.is_connected(p)
- assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
- assert p.order() - 1 == p.size()
- dp = nx.path_graph(3, create_using=nx.DiGraph)
- assert dp.has_edge(0, 1)
- assert not dp.has_edge(1, 0)
- mp = nx.path_graph(10, create_using=nx.MultiGraph)
- assert edges_equal(mp.edges(), p.edges())
- G = nx.path_graph("abc")
- assert len(G) == 3
- assert G.size() == 2
- G = nx.path_graph("abcb")
- assert len(G) == 3
- assert G.size() == 2
- g = nx.path_graph("abc", nx.DiGraph)
- assert len(g) == 3
- assert g.size() == 2
- assert g.is_directed()
- g = nx.path_graph("abcb", nx.DiGraph)
- assert len(g) == 3
- assert g.size() == 3
- G = nx.path_graph((1, 2, 3, 2, 4))
- assert G.has_edge(2, 4)
- def test_star_graph(self):
- assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
- assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
- assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
- assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
- assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
- assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
- s = nx.star_graph(10)
- assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
- pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
- ms = nx.star_graph(10, create_using=nx.MultiGraph)
- assert edges_equal(ms.edges(), s.edges())
- G = nx.star_graph("abc")
- assert len(G) == 3
- assert G.size() == 2
- G = nx.star_graph("abcb")
- assert len(G) == 3
- assert G.size() == 2
- G = nx.star_graph("abcb", create_using=nx.MultiGraph)
- assert len(G) == 3
- assert G.size() == 3
- G = nx.star_graph("abcdefg")
- assert len(G) == 7
- assert G.size() == 6
- def test_non_int_integers_for_star_graph(self):
- np = pytest.importorskip("numpy")
- G = nx.star_graph(np.int32(3))
- assert len(G) == 4
- assert G.size() == 3
- def test_trivial_graph(self):
- assert nx.number_of_nodes(nx.trivial_graph()) == 1
- def test_turan_graph(self):
- assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
- assert is_isomorphic(
- nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
- )
- def test_wheel_graph(self):
- for n, G in [
- ("", nx.null_graph()),
- (0, nx.null_graph()),
- (1, nx.empty_graph(1)),
- (2, nx.path_graph(2)),
- (3, nx.complete_graph(3)),
- (4, nx.complete_graph(4)),
- ]:
- g = nx.wheel_graph(n)
- assert is_isomorphic(g, G)
- g = nx.wheel_graph(10)
- assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
- pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
- mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
- assert edges_equal(mg.edges(), g.edges())
- G = nx.wheel_graph("abc")
- assert len(G) == 3
- assert G.size() == 3
- G = nx.wheel_graph("abcb")
- assert len(G) == 3
- assert G.size() == 4
- G = nx.wheel_graph("abcb", nx.MultiGraph)
- assert len(G) == 3
- assert G.size() == 6
- def test_non_int_integers_for_wheel_graph(self):
- np = pytest.importorskip("numpy")
- G = nx.wheel_graph(np.int32(3))
- assert len(G) == 3
- assert G.size() == 3
- def test_complete_0_partite_graph(self):
- """Tests that the complete 0-partite graph is the null graph."""
- G = nx.complete_multipartite_graph()
- H = nx.null_graph()
- assert nodes_equal(G, H)
- assert edges_equal(G.edges(), H.edges())
- def test_complete_1_partite_graph(self):
- """Tests that the complete 1-partite graph is the empty graph."""
- G = nx.complete_multipartite_graph(3)
- H = nx.empty_graph(3)
- assert nodes_equal(G, H)
- assert edges_equal(G.edges(), H.edges())
- def test_complete_2_partite_graph(self):
- """Tests that the complete 2-partite graph is the complete bipartite
- graph.
- """
- G = nx.complete_multipartite_graph(2, 3)
- H = nx.complete_bipartite_graph(2, 3)
- assert nodes_equal(G, H)
- assert edges_equal(G.edges(), H.edges())
- def test_complete_multipartite_graph(self):
- """Tests for generating the complete multipartite graph."""
- G = nx.complete_multipartite_graph(2, 3, 4)
- blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
- # Within each block, no two vertices should be adjacent.
- for block in blocks:
- for u, v in itertools.combinations_with_replacement(block, 2):
- assert v not in G[u]
- assert G.nodes[u] == G.nodes[v]
- # Across blocks, all vertices should be adjacent.
- for block1, block2 in itertools.combinations(blocks, 2):
- for u, v in itertools.product(block1, block2):
- assert v in G[u]
- assert G.nodes[u] != G.nodes[v]
|