123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- """Generator for Sudoku graphs
- This module gives a generator for n-Sudoku graphs. It can be used to develop
- algorithms for solving or generating Sudoku puzzles.
- A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with no
- number appearing twice in the same row, column, or 3x3 box.
- +---------+---------+---------+
- | | 8 6 4 | | 3 7 1 | | 2 5 9 |
- | | 3 2 5 | | 8 4 9 | | 7 6 1 |
- | | 9 7 1 | | 2 6 5 | | 8 4 3 |
- +---------+---------+---------+
- | | 4 3 6 | | 1 9 2 | | 5 8 7 |
- | | 1 9 8 | | 6 5 7 | | 4 3 2 |
- | | 2 5 7 | | 4 8 3 | | 9 1 6 |
- +---------+---------+---------+
- | | 6 8 9 | | 7 3 4 | | 1 2 5 |
- | | 7 1 3 | | 5 2 8 | | 6 9 4 |
- | | 5 4 2 | | 9 1 6 | | 3 7 8 |
- +---------+---------+---------+
- The Sudoku graph is an undirected graph with 81 vertices, corresponding to
- the cells of a Sudoku grid. It is a regular graph of degree 20. Two distinct
- vertices are adjacent if and only if the corresponding cells belong to the
- same row, column, or box. A completed Sudoku grid corresponds to a vertex
- coloring of the Sudoku graph with nine colors.
- More generally, the n-Sudoku graph is a graph with n^4 vertices, corresponding
- to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
- only if they belong to the same row, column, or n by n box.
- References
- ----------
- .. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
- polynomials. Notices of the AMS, 54(6), 708-717.
- .. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
- Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
- .. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
- Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
- """
- import networkx as nx
- from networkx.exception import NetworkXError
- __all__ = ["sudoku_graph"]
- def sudoku_graph(n=3):
- """Returns the n-Sudoku graph. The default value of n is 3.
- The n-Sudoku graph is a graph with n^4 vertices, corresponding to the
- cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
- only if they belong to the same row, column, or n-by-n box.
- Parameters
- ----------
- n: integer
- The order of the Sudoku graph, equal to the square root of the
- number of rows. The default is 3.
- Returns
- -------
- NetworkX graph
- The n-Sudoku graph Sud(n).
- Examples
- --------
- >>> G = nx.sudoku_graph()
- >>> G.number_of_nodes()
- 81
- >>> G.number_of_edges()
- 810
- >>> sorted(G.neighbors(42))
- [6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78]
- >>> G = nx.sudoku_graph(2)
- >>> G.number_of_nodes()
- 16
- >>> G.number_of_edges()
- 56
- References
- ----------
- .. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
- polynomials. Notices of the AMS, 54(6), 708-717.
- .. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
- Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
- .. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
- Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
- """
- if n < 0:
- raise NetworkXError("The order must be greater than or equal to zero.")
- n2 = n * n
- n3 = n2 * n
- n4 = n3 * n
- # Construct an empty graph with n^4 nodes
- G = nx.empty_graph(n4)
- # A Sudoku graph of order 0 or 1 has no edges
- if n < 2:
- return G
- # Add edges for cells in the same row
- for row_no in range(0, n2):
- row_start = row_no * n2
- for j in range(1, n2):
- for i in range(j):
- G.add_edge(row_start + i, row_start + j)
- # Add edges for cells in the same column
- for col_no in range(0, n2):
- for j in range(col_no, n4, n2):
- for i in range(col_no, j, n2):
- G.add_edge(i, j)
- # Add edges for cells in the same box
- for band_no in range(n):
- for stack_no in range(n):
- box_start = n3 * band_no + n * stack_no
- for j in range(1, n2):
- for i in range(j):
- u = box_start + (i % n) + n2 * (i // n)
- v = box_start + (j % n) + n2 * (j // n)
- G.add_edge(u, v)
- return G
|