123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955 |
- """
- Various small and named graphs, together with some compact generators.
- """
- __all__ = [
- "LCF_graph",
- "bull_graph",
- "chvatal_graph",
- "cubical_graph",
- "desargues_graph",
- "diamond_graph",
- "dodecahedral_graph",
- "frucht_graph",
- "heawood_graph",
- "hoffman_singleton_graph",
- "house_graph",
- "house_x_graph",
- "icosahedral_graph",
- "krackhardt_kite_graph",
- "moebius_kantor_graph",
- "octahedral_graph",
- "pappus_graph",
- "petersen_graph",
- "sedgewick_maze_graph",
- "tetrahedral_graph",
- "truncated_cube_graph",
- "truncated_tetrahedron_graph",
- "tutte_graph",
- ]
- from functools import wraps
- import networkx as nx
- from networkx.exception import NetworkXError
- from networkx.generators.classic import (
- complete_graph,
- cycle_graph,
- empty_graph,
- path_graph,
- )
- def _raise_on_directed(func):
- """
- A decorator which inspects the `create_using` argument and raises a
- NetworkX exception when `create_using` is a DiGraph (class or instance) for
- graph generators that do not support directed outputs.
- """
- @wraps(func)
- def wrapper(*args, **kwargs):
- if kwargs.get("create_using") is not None:
- G = nx.empty_graph(create_using=kwargs["create_using"])
- if G.is_directed():
- raise NetworkXError("Directed Graph not supported")
- return func(*args, **kwargs)
- return wrapper
- def LCF_graph(n, shift_list, repeats, create_using=None):
- """
- Return the cubic graph specified in LCF notation.
- LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
- notation used in the generation of various cubic Hamiltonian
- graphs of high symmetry. See, for example, dodecahedral_graph,
- desargues_graph, heawood_graph and pappus_graph below.
- n (number of nodes)
- The starting graph is the n-cycle with nodes 0,...,n-1.
- (The null graph is returned if n < 0.)
- shift_list = [s1,s2,..,sk], a list of integer shifts mod n,
- repeats
- integer specifying the number of times that shifts in shift_list
- are successively applied to each v_current in the n-cycle
- to generate an edge between v_current and v_current+shift mod n.
- For v1 cycling through the n-cycle a total of k*repeats
- with shift cycling through shiftlist repeats times connect
- v1 with v1+shift mod n
- The utility graph $K_{3,3}$
- >>> G = nx.LCF_graph(6, [3, -3], 3)
- The Heawood graph
- >>> G = nx.LCF_graph(14, [5, -5], 7)
- See http://mathworld.wolfram.com/LCFNotation.html for a description
- and references.
- """
- if n <= 0:
- return empty_graph(0, create_using)
- # start with the n-cycle
- G = cycle_graph(n, create_using)
- if G.is_directed():
- raise NetworkXError("Directed Graph not supported")
- G.name = "LCF_graph"
- nodes = sorted(G)
- n_extra_edges = repeats * len(shift_list)
- # edges are added n_extra_edges times
- # (not all of these need be new)
- if n_extra_edges < 1:
- return G
- for i in range(n_extra_edges):
- shift = shift_list[i % len(shift_list)] # cycle through shift_list
- v1 = nodes[i % n] # cycle repeatedly through nodes
- v2 = nodes[(i + shift) % n]
- G.add_edge(v1, v2)
- return G
- # -------------------------------------------------------------------------------
- # Various small and named graphs
- # -------------------------------------------------------------------------------
- @_raise_on_directed
- def bull_graph(create_using=None):
- """
- Returns the Bull Graph
- The Bull Graph has 5 nodes and 5 edges. It is a planar undirected
- graph in the form of a triangle with two disjoint pendant edges [1]_
- The name comes from the triangle and pendant edges representing
- respectively the body and legs of a bull.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- A bull graph with 5 nodes
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Bull_graph.
- """
- G = nx.from_dict_of_lists(
- {0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 4], 3: [1], 4: [2]},
- create_using=create_using,
- )
- G.name = "Bull Graph"
- return G
- @_raise_on_directed
- def chvatal_graph(create_using=None):
- """
- Returns the Chvátal Graph
- The Chvátal Graph is an undirected graph with 12 nodes and 24 edges [1]_.
- It has 370 distinct (directed) Hamiltonian cycles, giving a unique generalized
- LCF notation of order 4, two of order 6 , and 43 of order 1 [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- The Chvátal graph with 12 nodes and 24 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
- .. [2] https://mathworld.wolfram.com/ChvatalGraph.html
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 4, 6, 9],
- 1: [2, 5, 7],
- 2: [3, 6, 8],
- 3: [4, 7, 9],
- 4: [5, 8],
- 5: [10, 11],
- 6: [10, 11],
- 7: [8, 11],
- 8: [10],
- 9: [10, 11],
- },
- create_using=create_using,
- )
- G.name = "Chvatal Graph"
- return G
- @_raise_on_directed
- def cubical_graph(create_using=None):
- """
- Returns the 3-regular Platonic Cubical Graph
- The skeleton of the cube (the nodes and edges) form a graph, with 8
- nodes, and 12 edges. It is a special case of the hypercube graph.
- It is one of 5 Platonic graphs, each a skeleton of its
- Platonic solid [1]_.
- Such graphs arise in parallel processing in computers.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- A cubical graph with 8 nodes and 12 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Cube#Cubical_graph
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 3, 4],
- 1: [0, 2, 7],
- 2: [1, 3, 6],
- 3: [0, 2, 5],
- 4: [0, 5, 7],
- 5: [3, 4, 6],
- 6: [2, 5, 7],
- 7: [1, 4, 6],
- },
- create_using=create_using,
- )
- G.name = ("Platonic Cubical Graph",)
- return G
- def desargues_graph(create_using=None):
- """
- Returns the Desargues Graph
- The Desargues Graph is a non-planar, distance-transitive cubic graph
- with 20 nodes and 30 edges [1]_.
- It is a symmetric graph. It can be represented in LCF notation
- as [5,-5,9,-9]^5 [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Desargues Graph with 20 nodes and 30 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Desargues_graph
- .. [2] https://mathworld.wolfram.com/DesarguesGraph.html
- """
- G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
- G.name = "Desargues Graph"
- return G
- @_raise_on_directed
- def diamond_graph(create_using=None):
- """
- Returns the Diamond graph
- The Diamond Graph is planar undirected graph with 4 nodes and 5 edges.
- It is also sometimes known as the double triangle graph or kite graph [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Diamond Graph with 4 nodes and 5 edges
- References
- ----------
- .. [1] https://mathworld.wolfram.com/DiamondGraph.html
- """
- G = nx.from_dict_of_lists(
- {0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 3], 3: [1, 2]}, create_using=create_using
- )
- G.name = "Diamond Graph"
- return G
- def dodecahedral_graph(create_using=None):
- """
- Returns the Platonic Dodecahedral graph.
- The dodecahedral graph has 20 nodes and 30 edges. The skeleton of the
- dodecahedron forms a graph. It is one of 5 Platonic graphs [1]_.
- It can be described in LCF notation as:
- ``[10, 7, 4, -4, -7, 10, -4, 7, -7, 4]^2`` [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Dodecahedral Graph with 20 nodes and 30 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
- .. [2] https://mathworld.wolfram.com/DodecahedralGraph.html
- """
- G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
- G.name = "Dodecahedral Graph"
- return G
- def frucht_graph(create_using=None):
- """
- Returns the Frucht Graph.
- The Frucht Graph is the smallest cubical graph whose
- automorphism group consists only of the identity element [1]_.
- It has 12 nodes and 18 edges and no nontrivial symmetries.
- It is planar and Hamiltonian [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Frucht Graph with 12 nodes and 18 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Frucht_graph
- .. [2] https://mathworld.wolfram.com/FruchtGraph.html
- """
- G = cycle_graph(7, create_using)
- G.add_edges_from(
- [
- [0, 7],
- [1, 7],
- [2, 8],
- [3, 9],
- [4, 9],
- [5, 10],
- [6, 10],
- [7, 11],
- [8, 11],
- [8, 9],
- [10, 11],
- ]
- )
- G.name = "Frucht Graph"
- return G
- def heawood_graph(create_using=None):
- """
- Returns the Heawood Graph, a (3,6) cage.
- The Heawood Graph is an undirected graph with 14 nodes and 21 edges,
- named after Percy John Heawood [1]_.
- It is cubic symmetric, nonplanar, Hamiltonian, and can be represented
- in LCF notation as ``[5,-5]^7`` [2]_.
- It is the unique (3,6)-cage: the regular cubic graph of girth 6 with
- minimal number of vertices [3]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Heawood Graph with 14 nodes and 21 edges
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Heawood_graph
- .. [2] https://mathworld.wolfram.com/HeawoodGraph.html
- .. [3] https://www.win.tue.nl/~aeb/graphs/Heawood.html
- """
- G = LCF_graph(14, [5, -5], 7, create_using)
- G.name = "Heawood Graph"
- return G
- def hoffman_singleton_graph():
- """
- Returns the Hoffman-Singleton Graph.
- The Hoffman–Singleton graph is a symmetrical undirected graph
- with 50 nodes and 175 edges.
- All indices lie in ``Z % 5``: that is, the integers mod 5 [1]_.
- It is the only regular graph of vertex degree 7, diameter 2, and girth 5.
- It is the unique (7,5)-cage graph and Moore graph, and contains many
- copies of the Petersen graph [2]_.
- Returns
- -------
- G : networkx Graph
- Hoffman–Singleton Graph with 50 nodes and 175 edges
- Notes
- -----
- Constructed from pentagon and pentagram as follows: Take five pentagons $P_h$
- and five pentagrams $Q_i$ . Join vertex $j$ of $P_h$ to vertex $h·i+j$ of $Q_i$ [3]_.
- References
- ----------
- .. [1] https://blogs.ams.org/visualinsight/2016/02/01/hoffman-singleton-graph/
- .. [2] https://mathworld.wolfram.com/Hoffman-SingletonGraph.html
- .. [3] https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
- """
- G = nx.Graph()
- for i in range(5):
- for j in range(5):
- G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
- G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
- G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
- G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
- for k in range(5):
- G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
- G = nx.convert_node_labels_to_integers(G)
- G.name = "Hoffman-Singleton Graph"
- return G
- @_raise_on_directed
- def house_graph(create_using=None):
- """
- Returns the House graph (square with triangle on top)
- The house graph is a simple undirected graph with
- 5 nodes and 6 edges [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- House graph in the form of a square with a triangle on top
- References
- ----------
- .. [1] https://mathworld.wolfram.com/HouseGraph.html
- """
- G = nx.from_dict_of_lists(
- {0: [1, 2], 1: [0, 3], 2: [0, 3, 4], 3: [1, 2, 4], 4: [2, 3]},
- create_using=create_using,
- )
- G.name = "House Graph"
- return G
- @_raise_on_directed
- def house_x_graph(create_using=None):
- """
- Returns the House graph with a cross inside the house square.
- The House X-graph is the House graph plus the two edges connecting diagonally
- opposite vertices of the square base. It is also one of the two graphs
- obtained by removing two edges from the pentatope graph [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- House graph with diagonal vertices connected
- References
- ----------
- .. [1] https://mathworld.wolfram.com/HouseGraph.html
- """
- G = house_graph(create_using)
- G.add_edges_from([(0, 3), (1, 2)])
- G.name = "House-with-X-inside Graph"
- return G
- @_raise_on_directed
- def icosahedral_graph(create_using=None):
- """
- Returns the Platonic Icosahedral graph.
- The icosahedral graph has 12 nodes and 30 edges. It is a Platonic graph
- whose nodes have the connectivity of the icosahedron. It is undirected,
- regular and Hamiltonian [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Icosahedral graph with 12 nodes and 30 edges.
- References
- ----------
- .. [1] https://mathworld.wolfram.com/IcosahedralGraph.html
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 5, 7, 8, 11],
- 1: [2, 5, 6, 8],
- 2: [3, 6, 8, 9],
- 3: [4, 6, 9, 10],
- 4: [5, 6, 10, 11],
- 5: [6, 11],
- 7: [8, 9, 10, 11],
- 8: [9],
- 9: [10],
- 10: [11],
- },
- create_using=create_using,
- )
- G.name = "Platonic Icosahedral Graph"
- return G
- @_raise_on_directed
- def krackhardt_kite_graph(create_using=None):
- """
- Returns the Krackhardt Kite Social Network.
- A 10 actor social network introduced by David Krackhardt
- to illustrate different centrality measures [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Krackhardt Kite graph with 10 nodes and 18 edges
- Notes
- -----
- The traditional labeling is:
- Andre=1, Beverley=2, Carol=3, Diane=4,
- Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
- References
- ----------
- .. [1] Krackhardt, David. "Assessing the Political Landscape: Structure,
- Cognition, and Power in Organizations". Administrative Science Quarterly.
- 35 (2): 342–369. doi:10.2307/2393394. JSTOR 2393394. June 1990.
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 2, 3, 5],
- 1: [0, 3, 4, 6],
- 2: [0, 3, 5],
- 3: [0, 1, 2, 4, 5, 6],
- 4: [1, 3, 6],
- 5: [0, 2, 3, 6, 7],
- 6: [1, 3, 4, 5, 7],
- 7: [5, 6, 8],
- 8: [7, 9],
- 9: [8],
- },
- create_using=create_using,
- )
- G.name = "Krackhardt Kite Social Network"
- return G
- def moebius_kantor_graph(create_using=None):
- """
- Returns the Moebius-Kantor graph.
- The Möbius-Kantor graph is the cubic symmetric graph on 16 nodes.
- Its LCF notation is [5,-5]^8, and it is isomorphic to the generalized
- Petersen graph [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Moebius-Kantor graph
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
- """
- G = LCF_graph(16, [5, -5], 8, create_using)
- G.name = "Moebius-Kantor Graph"
- return G
- @_raise_on_directed
- def octahedral_graph(create_using=None):
- """
- Returns the Platonic Octahedral graph.
- The octahedral graph is the 6-node 12-edge Platonic graph having the
- connectivity of the octahedron [1]_. If 6 couples go to a party,
- and each person shakes hands with every person except his or her partner,
- then this graph describes the set of handshakes that take place;
- for this reason it is also called the cocktail party graph [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Octahedral graph
- References
- ----------
- .. [1] https://mathworld.wolfram.com/OctahedralGraph.html
- .. [2] https://en.wikipedia.org/wiki/Tur%C3%A1n_graph#Special_cases
- """
- G = nx.from_dict_of_lists(
- {0: [1, 2, 3, 4], 1: [2, 3, 5], 2: [4, 5], 3: [4, 5], 4: [5]},
- create_using=create_using,
- )
- G.name = "Platonic Octahedral Graph"
- return G
- def pappus_graph():
- """
- Returns the Pappus graph.
- The Pappus graph is a cubic symmetric distance-regular graph with 18 nodes
- and 27 edges. It is Hamiltonian and can be represented in LCF notation as
- [5,7,-7,7,-7,-5]^3 [1]_.
- Returns
- -------
- G : networkx Graph
- Pappus graph
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Pappus_graph
- """
- G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
- G.name = "Pappus Graph"
- return G
- @_raise_on_directed
- def petersen_graph(create_using=None):
- """
- Returns the Petersen graph.
- The Peterson graph is a cubic, undirected graph with 10 nodes and 15 edges [1]_.
- Julius Petersen constructed the graph as the smallest counterexample
- against the claim that a connected bridgeless cubic graph
- has an edge colouring with three colours [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Petersen graph
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Petersen_graph
- .. [2] https://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 4, 5],
- 1: [0, 2, 6],
- 2: [1, 3, 7],
- 3: [2, 4, 8],
- 4: [3, 0, 9],
- 5: [0, 7, 8],
- 6: [1, 8, 9],
- 7: [2, 5, 9],
- 8: [3, 5, 6],
- 9: [4, 6, 7],
- },
- create_using=create_using,
- )
- G.name = "Petersen Graph"
- return G
- def sedgewick_maze_graph(create_using=None):
- """
- Return a small maze with a cycle.
- This is the maze used in Sedgewick, 3rd Edition, Part 5, Graph
- Algorithms, Chapter 18, e.g. Figure 18.2 and following [1]_.
- Nodes are numbered 0,..,7
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Small maze with a cycle
- References
- ----------
- .. [1] Figure 18.2, Chapter 18, Graph Algorithms (3rd Ed), Sedgewick
- """
- G = empty_graph(0, create_using)
- G.add_nodes_from(range(8))
- G.add_edges_from([[0, 2], [0, 7], [0, 5]])
- G.add_edges_from([[1, 7], [2, 6]])
- G.add_edges_from([[3, 4], [3, 5]])
- G.add_edges_from([[4, 5], [4, 7], [4, 6]])
- G.name = "Sedgewick Maze"
- return G
- def tetrahedral_graph(create_using=None):
- """
- Returns the 3-regular Platonic Tetrahedral graph.
- Tetrahedral graph has 4 nodes and 6 edges. It is a
- special case of the complete graph, K4, and wheel graph, W4.
- It is one of the 5 platonic graphs [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Tetrahedral Grpah
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
- """
- G = complete_graph(4, create_using)
- G.name = "Platonic Tetrahedral graph"
- return G
- @_raise_on_directed
- def truncated_cube_graph(create_using=None):
- """
- Returns the skeleton of the truncated cube.
- The truncated cube is an Archimedean solid with 14 regular
- faces (6 octagonal and 8 triangular), 36 edges and 24 nodes [1]_.
- The truncated cube is created by truncating (cutting off) the tips
- of the cube one third of the way into each edge [2]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Skeleton of the truncated cube
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Truncated_cube
- .. [2] https://www.coolmath.com/reference/polyhedra-truncated-cube
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 2, 4],
- 1: [11, 14],
- 2: [3, 4],
- 3: [6, 8],
- 4: [5],
- 5: [16, 18],
- 6: [7, 8],
- 7: [10, 12],
- 8: [9],
- 9: [17, 20],
- 10: [11, 12],
- 11: [14],
- 12: [13],
- 13: [21, 22],
- 14: [15],
- 15: [19, 23],
- 16: [17, 18],
- 17: [20],
- 18: [19],
- 19: [23],
- 20: [21],
- 21: [22],
- 22: [23],
- },
- create_using=create_using,
- )
- G.name = "Truncated Cube Graph"
- return G
- def truncated_tetrahedron_graph(create_using=None):
- """
- Returns the skeleton of the truncated Platonic tetrahedron.
- The truncated tetrahedron is an Archimedean solid with 4 regular hexagonal faces,
- 4 equilateral triangle faces, 12 nodes and 18 edges. It can be constructed by truncating
- all 4 vertices of a regular tetrahedron at one third of the original edge length [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Skeleton of the truncated tetrahedron
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Truncated_tetrahedron
- """
- G = path_graph(12, create_using)
- G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
- G.name = "Truncated Tetrahedron Graph"
- return G
- @_raise_on_directed
- def tutte_graph(create_using=None):
- """
- Returns the Tutte graph.
- The Tutte graph is a cubic polyhedral, non-Hamiltonian graph. It has
- 46 nodes and 69 edges.
- It is a counterexample to Tait's conjecture that every 3-regular polyhedron
- has a Hamiltonian cycle.
- It can be realized geometrically from a tetrahedron by multiply truncating
- three of its vertices [1]_.
- Parameters
- ----------
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : networkx Graph
- Tutte graph
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Tutte_graph
- """
- G = nx.from_dict_of_lists(
- {
- 0: [1, 2, 3],
- 1: [4, 26],
- 2: [10, 11],
- 3: [18, 19],
- 4: [5, 33],
- 5: [6, 29],
- 6: [7, 27],
- 7: [8, 14],
- 8: [9, 38],
- 9: [10, 37],
- 10: [39],
- 11: [12, 39],
- 12: [13, 35],
- 13: [14, 15],
- 14: [34],
- 15: [16, 22],
- 16: [17, 44],
- 17: [18, 43],
- 18: [45],
- 19: [20, 45],
- 20: [21, 41],
- 21: [22, 23],
- 22: [40],
- 23: [24, 27],
- 24: [25, 32],
- 25: [26, 31],
- 26: [33],
- 27: [28],
- 28: [29, 32],
- 29: [30],
- 30: [31, 33],
- 31: [32],
- 34: [35, 38],
- 35: [36],
- 36: [37, 39],
- 37: [38],
- 40: [41, 44],
- 41: [42],
- 42: [43, 45],
- 43: [44],
- },
- create_using=create_using,
- )
- G.name = "Tutte's Graph"
- return G
|