1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318 |
- """
- Generators for random graphs.
- """
- import itertools
- import math
- from collections import defaultdict
- import networkx as nx
- from networkx.utils import py_random_state
- from .classic import complete_graph, empty_graph, path_graph, star_graph
- from .degree_seq import degree_sequence_tree
- __all__ = [
- "fast_gnp_random_graph",
- "gnp_random_graph",
- "dense_gnm_random_graph",
- "gnm_random_graph",
- "erdos_renyi_graph",
- "binomial_graph",
- "newman_watts_strogatz_graph",
- "watts_strogatz_graph",
- "connected_watts_strogatz_graph",
- "random_regular_graph",
- "barabasi_albert_graph",
- "dual_barabasi_albert_graph",
- "extended_barabasi_albert_graph",
- "powerlaw_cluster_graph",
- "random_lobster",
- "random_shell_graph",
- "random_powerlaw_tree",
- "random_powerlaw_tree_sequence",
- "random_kernel_graph",
- ]
- @py_random_state(2)
- def fast_gnp_random_graph(n, p, seed=None, directed=False):
- """Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
- a binomial graph.
- Parameters
- ----------
- n : int
- The number of nodes.
- p : float
- Probability for edge creation.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- directed : bool, optional (default=False)
- If True, this function returns a directed graph.
- Notes
- -----
- The $G_{n,p}$ graph algorithm chooses each of the $[n (n - 1)] / 2$
- (undirected) or $n (n - 1)$ (directed) possible edges with probability $p$.
- This algorithm [1]_ runs in $O(n + m)$ time, where `m` is the expected number of
- edges, which equals $p n (n - 1) / 2$. This should be faster than
- :func:`gnp_random_graph` when $p$ is small and the expected number of edges
- is small (that is, the graph is sparse).
- See Also
- --------
- gnp_random_graph
- References
- ----------
- .. [1] Vladimir Batagelj and Ulrik Brandes,
- "Efficient generation of large random networks",
- Phys. Rev. E, 71, 036113, 2005.
- """
- G = empty_graph(n)
- if p <= 0 or p >= 1:
- return nx.gnp_random_graph(n, p, seed=seed, directed=directed)
- lp = math.log(1.0 - p)
- if directed:
- G = nx.DiGraph(G)
- v = 1
- w = -1
- while v < n:
- lr = math.log(1.0 - seed.random())
- w = w + 1 + int(lr / lp)
- while w >= v and v < n:
- w = w - v
- v = v + 1
- if v < n:
- G.add_edge(w, v)
- # Nodes in graph are from 0,n-1 (start with v as the second node index).
- v = 1
- w = -1
- while v < n:
- lr = math.log(1.0 - seed.random())
- w = w + 1 + int(lr / lp)
- while w >= v and v < n:
- w = w - v
- v = v + 1
- if v < n:
- G.add_edge(v, w)
- return G
- @py_random_state(2)
- def gnp_random_graph(n, p, seed=None, directed=False):
- """Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph
- or a binomial graph.
- The $G_{n,p}$ model chooses each of the possible edges with probability $p$.
- Parameters
- ----------
- n : int
- The number of nodes.
- p : float
- Probability for edge creation.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- directed : bool, optional (default=False)
- If True, this function returns a directed graph.
- See Also
- --------
- fast_gnp_random_graph
- Notes
- -----
- This algorithm [2]_ runs in $O(n^2)$ time. For sparse graphs (that is, for
- small values of $p$), :func:`fast_gnp_random_graph` is a faster algorithm.
- :func:`binomial_graph` and :func:`erdos_renyi_graph` are
- aliases for :func:`gnp_random_graph`.
- >>> nx.binomial_graph is nx.gnp_random_graph
- True
- >>> nx.erdos_renyi_graph is nx.gnp_random_graph
- True
- References
- ----------
- .. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
- .. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
- """
- if directed:
- edges = itertools.permutations(range(n), 2)
- G = nx.DiGraph()
- else:
- edges = itertools.combinations(range(n), 2)
- G = nx.Graph()
- G.add_nodes_from(range(n))
- if p <= 0:
- return G
- if p >= 1:
- return complete_graph(n, create_using=G)
- for e in edges:
- if seed.random() < p:
- G.add_edge(*e)
- return G
- # add some aliases to common names
- binomial_graph = gnp_random_graph
- erdos_renyi_graph = gnp_random_graph
- @py_random_state(2)
- def dense_gnm_random_graph(n, m, seed=None):
- """Returns a $G_{n,m}$ random graph.
- In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
- of all graphs with $n$ nodes and $m$ edges.
- This algorithm should be faster than :func:`gnm_random_graph` for dense
- graphs.
- Parameters
- ----------
- n : int
- The number of nodes.
- m : int
- The number of edges.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- See Also
- --------
- gnm_random_graph
- Notes
- -----
- Algorithm by Keith M. Briggs Mar 31, 2006.
- Inspired by Knuth's Algorithm S (Selection sampling technique),
- in section 3.4.2 of [1]_.
- References
- ----------
- .. [1] Donald E. Knuth, The Art of Computer Programming,
- Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
- """
- mmax = n * (n - 1) // 2
- if m >= mmax:
- G = complete_graph(n)
- else:
- G = empty_graph(n)
- if n == 1 or m >= mmax:
- return G
- u = 0
- v = 1
- t = 0
- k = 0
- while True:
- if seed.randrange(mmax - t) < m - k:
- G.add_edge(u, v)
- k += 1
- if k == m:
- return G
- t += 1
- v += 1
- if v == n: # go to next row of adjacency matrix
- u += 1
- v = u + 1
- @py_random_state(2)
- def gnm_random_graph(n, m, seed=None, directed=False):
- """Returns a $G_{n,m}$ random graph.
- In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
- of all graphs with $n$ nodes and $m$ edges.
- This algorithm should be faster than :func:`dense_gnm_random_graph` for
- sparse graphs.
- Parameters
- ----------
- n : int
- The number of nodes.
- m : int
- The number of edges.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- directed : bool, optional (default=False)
- If True return a directed graph
- See also
- --------
- dense_gnm_random_graph
- """
- if directed:
- G = nx.DiGraph()
- else:
- G = nx.Graph()
- G.add_nodes_from(range(n))
- if n == 1:
- return G
- max_edges = n * (n - 1)
- if not directed:
- max_edges /= 2.0
- if m >= max_edges:
- return complete_graph(n, create_using=G)
- nlist = list(G)
- edge_count = 0
- while edge_count < m:
- # generate random edge,u,v
- u = seed.choice(nlist)
- v = seed.choice(nlist)
- if u == v or G.has_edge(u, v):
- continue
- else:
- G.add_edge(u, v)
- edge_count = edge_count + 1
- return G
- @py_random_state(3)
- def newman_watts_strogatz_graph(n, k, p, seed=None):
- """Returns a Newman–Watts–Strogatz small-world graph.
- Parameters
- ----------
- n : int
- The number of nodes.
- k : int
- Each node is joined with its `k` nearest neighbors in a ring
- topology.
- p : float
- The probability of adding a new edge for each edge.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Notes
- -----
- First create a ring over $n$ nodes [1]_. Then each node in the ring is
- connected with its $k$ nearest neighbors (or $k - 1$ neighbors if $k$
- is odd). Then shortcuts are created by adding new edges as follows: for
- each edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest
- neighbors" with probability $p$ add a new edge $(u, w)$ with
- randomly-chosen existing node $w$. In contrast with
- :func:`watts_strogatz_graph`, no edges are removed.
- See Also
- --------
- watts_strogatz_graph
- References
- ----------
- .. [1] M. E. J. Newman and D. J. Watts,
- Renormalization group analysis of the small-world network model,
- Physics Letters A, 263, 341, 1999.
- https://doi.org/10.1016/S0375-9601(99)00757-4
- """
- if k > n:
- raise nx.NetworkXError("k>=n, choose smaller k or larger n")
- # If k == n the graph return is a complete graph
- if k == n:
- return nx.complete_graph(n)
- G = empty_graph(n)
- nlist = list(G.nodes())
- fromv = nlist
- # connect the k/2 neighbors
- for j in range(1, k // 2 + 1):
- tov = fromv[j:] + fromv[0:j] # the first j are now last
- for i in range(len(fromv)):
- G.add_edge(fromv[i], tov[i])
- # for each edge u-v, with probability p, randomly select existing
- # node w and add new edge u-w
- e = list(G.edges())
- for u, v in e:
- if seed.random() < p:
- w = seed.choice(nlist)
- # no self-loops and reject if edge u-w exists
- # is that the correct NWS model?
- while w == u or G.has_edge(u, w):
- w = seed.choice(nlist)
- if G.degree(u) >= n - 1:
- break # skip this rewiring
- else:
- G.add_edge(u, w)
- return G
- @py_random_state(3)
- def watts_strogatz_graph(n, k, p, seed=None):
- """Returns a Watts–Strogatz small-world graph.
- Parameters
- ----------
- n : int
- The number of nodes
- k : int
- Each node is joined with its `k` nearest neighbors in a ring
- topology.
- p : float
- The probability of rewiring each edge
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- See Also
- --------
- newman_watts_strogatz_graph
- connected_watts_strogatz_graph
- Notes
- -----
- First create a ring over $n$ nodes [1]_. Then each node in the ring is joined
- to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
- Then shortcuts are created by replacing some edges as follows: for each
- edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
- with probability $p$ replace it with a new edge $(u, w)$ with uniformly
- random choice of existing node $w$.
- In contrast with :func:`newman_watts_strogatz_graph`, the random rewiring
- does not increase the number of edges. The rewired graph is not guaranteed
- to be connected as in :func:`connected_watts_strogatz_graph`.
- References
- ----------
- .. [1] Duncan J. Watts and Steven H. Strogatz,
- Collective dynamics of small-world networks,
- Nature, 393, pp. 440--442, 1998.
- """
- if k > n:
- raise nx.NetworkXError("k>n, choose smaller k or larger n")
- # If k == n, the graph is complete not Watts-Strogatz
- if k == n:
- return nx.complete_graph(n)
- G = nx.Graph()
- nodes = list(range(n)) # nodes are labeled 0 to n-1
- # connect each node to k/2 neighbors
- for j in range(1, k // 2 + 1):
- targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
- G.add_edges_from(zip(nodes, targets))
- # rewire edges from each node
- # loop over all nodes in order (label) and neighbors in order (distance)
- # no self loops or multiple edges allowed
- for j in range(1, k // 2 + 1): # outer loop is neighbors
- targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
- # inner loop in node order
- for u, v in zip(nodes, targets):
- if seed.random() < p:
- w = seed.choice(nodes)
- # Enforce no self-loops or multiple edges
- while w == u or G.has_edge(u, w):
- w = seed.choice(nodes)
- if G.degree(u) >= n - 1:
- break # skip this rewiring
- else:
- G.remove_edge(u, v)
- G.add_edge(u, w)
- return G
- @py_random_state(4)
- def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None):
- """Returns a connected Watts–Strogatz small-world graph.
- Attempts to generate a connected graph by repeated generation of
- Watts–Strogatz small-world graphs. An exception is raised if the maximum
- number of tries is exceeded.
- Parameters
- ----------
- n : int
- The number of nodes
- k : int
- Each node is joined with its `k` nearest neighbors in a ring
- topology.
- p : float
- The probability of rewiring each edge
- tries : int
- Number of attempts to generate a connected graph.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Notes
- -----
- First create a ring over $n$ nodes [1]_. Then each node in the ring is joined
- to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
- Then shortcuts are created by replacing some edges as follows: for each
- edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
- with probability $p$ replace it with a new edge $(u, w)$ with uniformly
- random choice of existing node $w$.
- The entire process is repeated until a connected graph results.
- See Also
- --------
- newman_watts_strogatz_graph
- watts_strogatz_graph
- References
- ----------
- .. [1] Duncan J. Watts and Steven H. Strogatz,
- Collective dynamics of small-world networks,
- Nature, 393, pp. 440--442, 1998.
- """
- for i in range(tries):
- # seed is an RNG so should change sequence each call
- G = watts_strogatz_graph(n, k, p, seed)
- if nx.is_connected(G):
- return G
- raise nx.NetworkXError("Maximum number of tries exceeded")
- @py_random_state(2)
- def random_regular_graph(d, n, seed=None):
- r"""Returns a random $d$-regular graph on $n$ nodes.
- A regular graph is a graph where each node has the same number of neighbors.
- The resulting graph has no self-loops or parallel edges.
- Parameters
- ----------
- d : int
- The degree of each node.
- n : integer
- The number of nodes. The value of $n \times d$ must be even.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Notes
- -----
- The nodes are numbered from $0$ to $n - 1$.
- Kim and Vu's paper [2]_ shows that this algorithm samples in an
- asymptotically uniform way from the space of random graphs when
- $d = O(n^{1 / 3 - \epsilon})$.
- Raises
- ------
- NetworkXError
- If $n \times d$ is odd or $d$ is greater than or equal to $n$.
- References
- ----------
- .. [1] A. Steger and N. Wormald,
- Generating random regular graphs quickly,
- Probability and Computing 8 (1999), 377-396, 1999.
- https://doi.org/10.1017/S0963548399003867
- .. [2] Jeong Han Kim and Van H. Vu,
- Generating random regular graphs,
- Proceedings of the thirty-fifth ACM symposium on Theory of computing,
- San Diego, CA, USA, pp 213--222, 2003.
- http://portal.acm.org/citation.cfm?id=780542.780576
- """
- if (n * d) % 2 != 0:
- raise nx.NetworkXError("n * d must be even")
- if not 0 <= d < n:
- raise nx.NetworkXError("the 0 <= d < n inequality must be satisfied")
- if d == 0:
- return empty_graph(n)
- def _suitable(edges, potential_edges):
- # Helper subroutine to check if there are suitable edges remaining
- # If False, the generation of the graph has failed
- if not potential_edges:
- return True
- for s1 in potential_edges:
- for s2 in potential_edges:
- # Two iterators on the same dictionary are guaranteed
- # to visit it in the same order if there are no
- # intervening modifications.
- if s1 == s2:
- # Only need to consider s1-s2 pair one time
- break
- if s1 > s2:
- s1, s2 = s2, s1
- if (s1, s2) not in edges:
- return True
- return False
- def _try_creation():
- # Attempt to create an edge set
- edges = set()
- stubs = list(range(n)) * d
- while stubs:
- potential_edges = defaultdict(lambda: 0)
- seed.shuffle(stubs)
- stubiter = iter(stubs)
- for s1, s2 in zip(stubiter, stubiter):
- if s1 > s2:
- s1, s2 = s2, s1
- if s1 != s2 and ((s1, s2) not in edges):
- edges.add((s1, s2))
- else:
- potential_edges[s1] += 1
- potential_edges[s2] += 1
- if not _suitable(edges, potential_edges):
- return None # failed to find suitable edge set
- stubs = [
- node
- for node, potential in potential_edges.items()
- for _ in range(potential)
- ]
- return edges
- # Even though a suitable edge set exists,
- # the generation of such a set is not guaranteed.
- # Try repeatedly to find one.
- edges = _try_creation()
- while edges is None:
- edges = _try_creation()
- G = nx.Graph()
- G.add_edges_from(edges)
- return G
- def _random_subset(seq, m, rng):
- """Return m unique elements from seq.
- This differs from random.sample which can return repeated
- elements if seq holds repeated elements.
- Note: rng is a random.Random or numpy.random.RandomState instance.
- """
- targets = set()
- while len(targets) < m:
- x = rng.choice(seq)
- targets.add(x)
- return targets
- @py_random_state(2)
- def barabasi_albert_graph(n, m, seed=None, initial_graph=None):
- """Returns a random graph using Barabási–Albert preferential attachment
- A graph of $n$ nodes is grown by attaching new nodes each with $m$
- edges that are preferentially attached to existing nodes with high degree.
- Parameters
- ----------
- n : int
- Number of nodes
- m : int
- Number of edges to attach from a new node to existing nodes
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- initial_graph : Graph or None (default)
- Initial network for Barabási–Albert algorithm.
- It should be a connected graph for most use cases.
- A copy of `initial_graph` is used.
- If None, starts from a star graph on (m+1) nodes.
- Returns
- -------
- G : Graph
- Raises
- ------
- NetworkXError
- If `m` does not satisfy ``1 <= m < n``, or
- the initial graph number of nodes m0 does not satisfy ``m <= m0 <= n``.
- References
- ----------
- .. [1] A. L. Barabási and R. Albert "Emergence of scaling in
- random networks", Science 286, pp 509-512, 1999.
- """
- if m < 1 or m >= n:
- raise nx.NetworkXError(
- f"Barabási–Albert network must have m >= 1 and m < n, m = {m}, n = {n}"
- )
- if initial_graph is None:
- # Default initial graph : star graph on (m + 1) nodes
- G = star_graph(m)
- else:
- if len(initial_graph) < m or len(initial_graph) > n:
- raise nx.NetworkXError(
- f"Barabási–Albert initial graph needs between m={m} and n={n} nodes"
- )
- G = initial_graph.copy()
- # List of existing nodes, with nodes repeated once for each adjacent edge
- repeated_nodes = [n for n, d in G.degree() for _ in range(d)]
- # Start adding the other n - m0 nodes.
- source = len(G)
- while source < n:
- # Now choose m unique nodes from the existing nodes
- # Pick uniformly from repeated_nodes (preferential attachment)
- targets = _random_subset(repeated_nodes, m, seed)
- # Add edges to m nodes from the source.
- G.add_edges_from(zip([source] * m, targets))
- # Add one node to the list for each new edge just created.
- repeated_nodes.extend(targets)
- # And the new node "source" has m edges to add to the list.
- repeated_nodes.extend([source] * m)
- source += 1
- return G
- @py_random_state(4)
- def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None):
- """Returns a random graph using dual Barabási–Albert preferential attachment
- A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$
- edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that
- are preferentially attached to existing nodes with high degree.
- Parameters
- ----------
- n : int
- Number of nodes
- m1 : int
- Number of edges to link each new node to existing nodes with probability $p$
- m2 : int
- Number of edges to link each new node to existing nodes with probability $1-p$
- p : float
- The probability of attaching $m_1$ edges (as opposed to $m_2$ edges)
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- initial_graph : Graph or None (default)
- Initial network for Barabási–Albert algorithm.
- A copy of `initial_graph` is used.
- It should be connected for most use cases.
- If None, starts from an star graph on max(m1, m2) + 1 nodes.
- Returns
- -------
- G : Graph
- Raises
- ------
- NetworkXError
- If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or
- `p` does not satisfy ``0 <= p <= 1``, or
- the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n.
- References
- ----------
- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538.
- """
- if m1 < 1 or m1 >= n:
- raise nx.NetworkXError(
- f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}"
- )
- if m2 < 1 or m2 >= n:
- raise nx.NetworkXError(
- f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}"
- )
- if p < 0 or p > 1:
- raise nx.NetworkXError(
- f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}"
- )
- # For simplicity, if p == 0 or 1, just return BA
- if p == 1:
- return barabasi_albert_graph(n, m1, seed)
- elif p == 0:
- return barabasi_albert_graph(n, m2, seed)
- if initial_graph is None:
- # Default initial graph : empty graph on max(m1, m2) nodes
- G = star_graph(max(m1, m2))
- else:
- if len(initial_graph) < max(m1, m2) or len(initial_graph) > n:
- raise nx.NetworkXError(
- f"Barabási–Albert initial graph must have between "
- f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes"
- )
- G = initial_graph.copy()
- # Target nodes for new edges
- targets = list(G)
- # List of existing nodes, with nodes repeated once for each adjacent edge
- repeated_nodes = [n for n, d in G.degree() for _ in range(d)]
- # Start adding the remaining nodes.
- source = len(G)
- while source < n:
- # Pick which m to use (m1 or m2)
- if seed.random() < p:
- m = m1
- else:
- m = m2
- # Now choose m unique nodes from the existing nodes
- # Pick uniformly from repeated_nodes (preferential attachment)
- targets = _random_subset(repeated_nodes, m, seed)
- # Add edges to m nodes from the source.
- G.add_edges_from(zip([source] * m, targets))
- # Add one node to the list for each new edge just created.
- repeated_nodes.extend(targets)
- # And the new node "source" has m edges to add to the list.
- repeated_nodes.extend([source] * m)
- source += 1
- return G
- @py_random_state(4)
- def extended_barabasi_albert_graph(n, m, p, q, seed=None):
- """Returns an extended Barabási–Albert model graph.
- An extended Barabási–Albert model graph is a random graph constructed
- using preferential attachment. The extended model allows new edges,
- rewired edges or new nodes. Based on the probabilities $p$ and $q$
- with $p + q < 1$, the growing behavior of the graph is determined as:
- 1) With $p$ probability, $m$ new edges are added to the graph,
- starting from randomly chosen existing nodes and attached preferentially at the other end.
- 2) With $q$ probability, $m$ existing edges are rewired
- by randomly choosing an edge and rewiring one end to a preferentially chosen node.
- 3) With $(1 - p - q)$ probability, $m$ new nodes are added to the graph
- with edges attached preferentially.
- When $p = q = 0$, the model behaves just like the Barabási–Alber model.
- Parameters
- ----------
- n : int
- Number of nodes
- m : int
- Number of edges with which a new node attaches to existing nodes
- p : float
- Probability value for adding an edge between existing nodes. p + q < 1
- q : float
- Probability value of rewiring of existing edges. p + q < 1
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Returns
- -------
- G : Graph
- Raises
- ------
- NetworkXError
- If `m` does not satisfy ``1 <= m < n`` or ``1 >= p + q``
- References
- ----------
- .. [1] Albert, R., & Barabási, A. L. (2000)
- Topology of evolving networks: local events and universality
- Physical review letters, 85(24), 5234.
- """
- if m < 1 or m >= n:
- msg = f"Extended Barabasi-Albert network needs m>=1 and m<n, m={m}, n={n}"
- raise nx.NetworkXError(msg)
- if p + q >= 1:
- msg = f"Extended Barabasi-Albert network needs p + q <= 1, p={p}, q={q}"
- raise nx.NetworkXError(msg)
- # Add m initial nodes (m0 in barabasi-speak)
- G = empty_graph(m)
- # List of nodes to represent the preferential attachment random selection.
- # At the creation of the graph, all nodes are added to the list
- # so that even nodes that are not connected have a chance to get selected,
- # for rewiring and adding of edges.
- # With each new edge, nodes at the ends of the edge are added to the list.
- attachment_preference = []
- attachment_preference.extend(range(m))
- # Start adding the other n-m nodes. The first node is m.
- new_node = m
- while new_node < n:
- a_probability = seed.random()
- # Total number of edges of a Clique of all the nodes
- clique_degree = len(G) - 1
- clique_size = (len(G) * clique_degree) / 2
- # Adding m new edges, if there is room to add them
- if a_probability < p and G.size() <= clique_size - m:
- # Select the nodes where an edge can be added
- elligible_nodes = [nd for nd, deg in G.degree() if deg < clique_degree]
- for i in range(m):
- # Choosing a random source node from elligible_nodes
- src_node = seed.choice(elligible_nodes)
- # Picking a possible node that is not 'src_node' or
- # neighbor with 'src_node', with preferential attachment
- prohibited_nodes = list(G[src_node])
- prohibited_nodes.append(src_node)
- # This will raise an exception if the sequence is empty
- dest_node = seed.choice(
- [nd for nd in attachment_preference if nd not in prohibited_nodes]
- )
- # Adding the new edge
- G.add_edge(src_node, dest_node)
- # Appending both nodes to add to their preferential attachment
- attachment_preference.append(src_node)
- attachment_preference.append(dest_node)
- # Adjusting the elligible nodes. Degree may be saturated.
- if G.degree(src_node) == clique_degree:
- elligible_nodes.remove(src_node)
- if (
- G.degree(dest_node) == clique_degree
- and dest_node in elligible_nodes
- ):
- elligible_nodes.remove(dest_node)
- # Rewiring m edges, if there are enough edges
- elif p <= a_probability < (p + q) and m <= G.size() < clique_size:
- # Selecting nodes that have at least 1 edge but that are not
- # fully connected to ALL other nodes (center of star).
- # These nodes are the pivot nodes of the edges to rewire
- elligible_nodes = [nd for nd, deg in G.degree() if 0 < deg < clique_degree]
- for i in range(m):
- # Choosing a random source node
- node = seed.choice(elligible_nodes)
- # The available nodes do have a neighbor at least.
- neighbor_nodes = list(G[node])
- # Choosing the other end that will get dettached
- src_node = seed.choice(neighbor_nodes)
- # Picking a target node that is not 'node' or
- # neighbor with 'node', with preferential attachment
- neighbor_nodes.append(node)
- dest_node = seed.choice(
- [nd for nd in attachment_preference if nd not in neighbor_nodes]
- )
- # Rewire
- G.remove_edge(node, src_node)
- G.add_edge(node, dest_node)
- # Adjusting the preferential attachment list
- attachment_preference.remove(src_node)
- attachment_preference.append(dest_node)
- # Adjusting the elligible nodes.
- # nodes may be saturated or isolated.
- if G.degree(src_node) == 0 and src_node in elligible_nodes:
- elligible_nodes.remove(src_node)
- if dest_node in elligible_nodes:
- if G.degree(dest_node) == clique_degree:
- elligible_nodes.remove(dest_node)
- else:
- if G.degree(dest_node) == 1:
- elligible_nodes.append(dest_node)
- # Adding new node with m edges
- else:
- # Select the edges' nodes by preferential attachment
- targets = _random_subset(attachment_preference, m, seed)
- G.add_edges_from(zip([new_node] * m, targets))
- # Add one node to the list for each new edge just created.
- attachment_preference.extend(targets)
- # The new node has m edges to it, plus itself: m + 1
- attachment_preference.extend([new_node] * (m + 1))
- new_node += 1
- return G
- @py_random_state(3)
- def powerlaw_cluster_graph(n, m, p, seed=None):
- """Holme and Kim algorithm for growing graphs with powerlaw
- degree distribution and approximate average clustering.
- Parameters
- ----------
- n : int
- the number of nodes
- m : int
- the number of random edges to add for each new node
- p : float,
- Probability of adding a triangle after adding a random edge
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Notes
- -----
- The average clustering has a hard time getting above a certain
- cutoff that depends on `m`. This cutoff is often quite low. The
- transitivity (fraction of triangles to possible triangles) seems to
- decrease with network size.
- It is essentially the Barabási–Albert (BA) growth model with an
- extra step that each random edge is followed by a chance of
- making an edge to one of its neighbors too (and thus a triangle).
- This algorithm improves on BA in the sense that it enables a
- higher average clustering to be attained if desired.
- It seems possible to have a disconnected graph with this algorithm
- since the initial `m` nodes may not be all linked to a new node
- on the first iteration like the BA model.
- Raises
- ------
- NetworkXError
- If `m` does not satisfy ``1 <= m <= n`` or `p` does not
- satisfy ``0 <= p <= 1``.
- References
- ----------
- .. [1] P. Holme and B. J. Kim,
- "Growing scale-free networks with tunable clustering",
- Phys. Rev. E, 65, 026107, 2002.
- """
- if m < 1 or n < m:
- raise nx.NetworkXError(f"NetworkXError must have m>1 and m<n, m={m},n={n}")
- if p > 1 or p < 0:
- raise nx.NetworkXError(f"NetworkXError p must be in [0,1], p={p}")
- G = empty_graph(m) # add m initial nodes (m0 in barabasi-speak)
- repeated_nodes = list(G.nodes()) # list of existing nodes to sample from
- # with nodes repeated once for each adjacent edge
- source = m # next node is m
- while source < n: # Now add the other n-1 nodes
- possible_targets = _random_subset(repeated_nodes, m, seed)
- # do one preferential attachment for new node
- target = possible_targets.pop()
- G.add_edge(source, target)
- repeated_nodes.append(target) # add one node to list for each new link
- count = 1
- while count < m: # add m-1 more new links
- if seed.random() < p: # clustering step: add triangle
- neighborhood = [
- nbr
- for nbr in G.neighbors(target)
- if not G.has_edge(source, nbr) and nbr != source
- ]
- if neighborhood: # if there is a neighbor without a link
- nbr = seed.choice(neighborhood)
- G.add_edge(source, nbr) # add triangle
- repeated_nodes.append(nbr)
- count = count + 1
- continue # go to top of while loop
- # else do preferential attachment step if above fails
- target = possible_targets.pop()
- G.add_edge(source, target)
- repeated_nodes.append(target)
- count = count + 1
- repeated_nodes.extend([source] * m) # add source node to list m times
- source += 1
- return G
- @py_random_state(3)
- def random_lobster(n, p1, p2, seed=None):
- """Returns a random lobster graph.
- A lobster is a tree that reduces to a caterpillar when pruning all
- leaf nodes. A caterpillar is a tree that reduces to a path graph
- when pruning all leaf nodes; setting `p2` to zero produces a caterpillar.
- This implementation iterates on the probabilities `p1` and `p2` to add
- edges at levels 1 and 2, respectively. Graphs are therefore constructed
- iteratively with uniform randomness at each level rather than being selected
- uniformly at random from the set of all possible lobsters.
- Parameters
- ----------
- n : int
- The expected number of nodes in the backbone
- p1 : float
- Probability of adding an edge to the backbone
- p2 : float
- Probability of adding an edge one level beyond backbone
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Raises
- ------
- NetworkXError
- If `p1` or `p2` parameters are >= 1 because the while loops would never finish.
- """
- p1, p2 = abs(p1), abs(p2)
- if any(p >= 1 for p in [p1, p2]):
- raise nx.NetworkXError("Probability values for `p1` and `p2` must both be < 1.")
- # a necessary ingredient in any self-respecting graph library
- llen = int(2 * seed.random() * n + 0.5)
- L = path_graph(llen)
- # build caterpillar: add edges to path graph with probability p1
- current_node = llen - 1
- for n in range(llen):
- while seed.random() < p1: # add fuzzy caterpillar parts
- current_node += 1
- L.add_edge(n, current_node)
- cat_node = current_node
- while seed.random() < p2: # add crunchy lobster bits
- current_node += 1
- L.add_edge(cat_node, current_node)
- return L # voila, un lobster!
- @py_random_state(1)
- def random_shell_graph(constructor, seed=None):
- """Returns a random shell graph for the constructor given.
- Parameters
- ----------
- constructor : list of three-tuples
- Represents the parameters for a shell, starting at the center
- shell. Each element of the list must be of the form `(n, m,
- d)`, where `n` is the number of nodes in the shell, `m` is
- the number of edges in the shell, and `d` is the ratio of
- inter-shell (next) edges to intra-shell edges. If `d` is zero,
- there will be no intra-shell edges, and if `d` is one there
- will be all possible intra-shell edges.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Examples
- --------
- >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
- >>> G = nx.random_shell_graph(constructor)
- """
- G = empty_graph(0)
- glist = []
- intra_edges = []
- nnodes = 0
- # create gnm graphs for each shell
- for n, m, d in constructor:
- inter_edges = int(m * d)
- intra_edges.append(m - inter_edges)
- g = nx.convert_node_labels_to_integers(
- gnm_random_graph(n, inter_edges, seed=seed), first_label=nnodes
- )
- glist.append(g)
- nnodes += n
- G = nx.operators.union(G, g)
- # connect the shells randomly
- for gi in range(len(glist) - 1):
- nlist1 = list(glist[gi])
- nlist2 = list(glist[gi + 1])
- total_edges = intra_edges[gi]
- edge_count = 0
- while edge_count < total_edges:
- u = seed.choice(nlist1)
- v = seed.choice(nlist2)
- if u == v or G.has_edge(u, v):
- continue
- else:
- G.add_edge(u, v)
- edge_count = edge_count + 1
- return G
- @py_random_state(2)
- def random_powerlaw_tree(n, gamma=3, seed=None, tries=100):
- """Returns a tree with a power law degree distribution.
- Parameters
- ----------
- n : int
- The number of nodes.
- gamma : float
- Exponent of the power law.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- tries : int
- Number of attempts to adjust the sequence to make it a tree.
- Raises
- ------
- NetworkXError
- If no valid sequence is found within the maximum number of
- attempts.
- Notes
- -----
- A trial power law degree sequence is chosen and then elements are
- swapped with new elements from a powerlaw distribution until the
- sequence makes a tree (by checking, for example, that the number of
- edges is one smaller than the number of nodes).
- """
- # This call may raise a NetworkXError if the number of tries is succeeded.
- seq = random_powerlaw_tree_sequence(n, gamma=gamma, seed=seed, tries=tries)
- G = degree_sequence_tree(seq)
- return G
- @py_random_state(2)
- def random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100):
- """Returns a degree sequence for a tree with a power law distribution.
- Parameters
- ----------
- n : int,
- The number of nodes.
- gamma : float
- Exponent of the power law.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- tries : int
- Number of attempts to adjust the sequence to make it a tree.
- Raises
- ------
- NetworkXError
- If no valid sequence is found within the maximum number of
- attempts.
- Notes
- -----
- A trial power law degree sequence is chosen and then elements are
- swapped with new elements from a power law distribution until
- the sequence makes a tree (by checking, for example, that the number of
- edges is one smaller than the number of nodes).
- """
- # get trial sequence
- z = nx.utils.powerlaw_sequence(n, exponent=gamma, seed=seed)
- # round to integer values in the range [0,n]
- zseq = [min(n, max(round(s), 0)) for s in z]
- # another sequence to swap values from
- z = nx.utils.powerlaw_sequence(tries, exponent=gamma, seed=seed)
- # round to integer values in the range [0,n]
- swap = [min(n, max(round(s), 0)) for s in z]
- for deg in swap:
- # If this degree sequence can be the degree sequence of a tree, return
- # it. It can be a tree if the number of edges is one fewer than the
- # number of nodes, or in other words, `n - sum(zseq) / 2 == 1`. We
- # use an equivalent condition below that avoids floating point
- # operations.
- if 2 * n - sum(zseq) == 2:
- return zseq
- index = seed.randint(0, n - 1)
- zseq[index] = swap.pop()
- raise nx.NetworkXError(
- f"Exceeded max ({tries}) attempts for a valid tree sequence."
- )
- @py_random_state(3)
- def random_kernel_graph(n, kernel_integral, kernel_root=None, seed=None):
- r"""Returns an random graph based on the specified kernel.
- The algorithm chooses each of the $[n(n-1)]/2$ possible edges with
- probability specified by a kernel $\kappa(x,y)$ [1]_. The kernel
- $\kappa(x,y)$ must be a symmetric (in $x,y$), non-negative,
- bounded function.
- Parameters
- ----------
- n : int
- The number of nodes
- kernel_integral : function
- Function that returns the definite integral of the kernel $\kappa(x,y)$,
- $F(y,a,b) := \int_a^b \kappa(x,y)dx$
- kernel_root: function (optional)
- Function that returns the root $b$ of the equation $F(y,a,b) = r$.
- If None, the root is found using :func:`scipy.optimize.brentq`
- (this requires SciPy).
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Notes
- -----
- The kernel is specified through its definite integral which must be
- provided as one of the arguments. If the integral and root of the
- kernel integral can be found in $O(1)$ time then this algorithm runs in
- time $O(n+m)$ where m is the expected number of edges [2]_.
- The nodes are set to integers from $0$ to $n-1$.
- Examples
- --------
- Generate an Erdős–Rényi random graph $G(n,c/n)$, with kernel
- $\kappa(x,y)=c$ where $c$ is the mean expected degree.
- >>> def integral(u, w, z):
- ... return c * (z - w)
- >>> def root(u, w, r):
- ... return r / c + w
- >>> c = 1
- >>> graph = nx.random_kernel_graph(1000, integral, root)
- See Also
- --------
- gnp_random_graph
- expected_degree_graph
- References
- ----------
- .. [1] Bollobás, Béla, Janson, S. and Riordan, O.
- "The phase transition in inhomogeneous random graphs",
- *Random Structures Algorithms*, 31, 3--122, 2007.
- .. [2] Hagberg A, Lemons N (2015),
- "Fast Generation of Sparse Random Kernel Graphs".
- PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177
- """
- if kernel_root is None:
- import scipy as sp
- import scipy.optimize # call as sp.optimize
- def kernel_root(y, a, r):
- def my_function(b):
- return kernel_integral(y, a, b) - r
- return sp.optimize.brentq(my_function, a, 1)
- graph = nx.Graph()
- graph.add_nodes_from(range(n))
- (i, j) = (1, 1)
- while i < n:
- r = -math.log(1 - seed.random()) # (1-seed.random()) in (0, 1]
- if kernel_integral(i / n, j / n, 1) <= r:
- i, j = i + 1, i + 1
- else:
- j = math.ceil(n * kernel_root(i / n, j / n, r))
- graph.add_edge(i - 1, j - 1)
- return graph
|