123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- """Functions related to the Mycielski Operation and the Mycielskian family
- of graphs.
- """
- import networkx as nx
- from networkx.utils import not_implemented_for
- __all__ = ["mycielskian", "mycielski_graph"]
- @not_implemented_for("directed")
- @not_implemented_for("multigraph")
- def mycielskian(G, iterations=1):
- r"""Returns the Mycielskian of a simple, undirected graph G
- The Mycielskian of graph preserves a graph's triangle free
- property while increasing the chromatic number by 1.
- The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
- graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.
- The construction is as follows:
- Let :math:`V = {0, ..., n-1}`. Construct another vertex set
- :math:`U = {n, ..., 2n}` and a vertex, `w`.
- Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
- For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
- :math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
- edge :math:`(u, w)` to M.
- The Mycielski Operation can be done multiple times by repeating the above
- process iteratively.
- More information can be found at https://en.wikipedia.org/wiki/Mycielskian
- Parameters
- ----------
- G : graph
- A simple, undirected NetworkX graph
- iterations : int
- The number of iterations of the Mycielski operation to
- perform on G. Defaults to 1. Must be a non-negative integer.
- Returns
- -------
- M : graph
- The Mycielskian of G after the specified number of iterations.
- Notes
- -----
- Graph, node, and edge data are not necessarily propagated to the new graph.
- """
- M = nx.convert_node_labels_to_integers(G)
- for i in range(iterations):
- n = M.number_of_nodes()
- M.add_nodes_from(range(n, 2 * n))
- old_edges = list(M.edges())
- M.add_edges_from((u, v + n) for u, v in old_edges)
- M.add_edges_from((u + n, v) for u, v in old_edges)
- M.add_node(2 * n)
- M.add_edges_from((u + n, 2 * n) for u in range(n))
- return M
- def mycielski_graph(n):
- """Generator for the n_th Mycielski Graph.
- The Mycielski family of graphs is an infinite set of graphs.
- :math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
- edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
- :math:`M_{i-1}`.
- More information can be found at
- http://mathworld.wolfram.com/MycielskiGraph.html
- Parameters
- ----------
- n : int
- The desired Mycielski Graph.
- Returns
- -------
- M : graph
- The n_th Mycielski Graph
- Notes
- -----
- The first graph in the Mycielski sequence is the singleton graph.
- The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
- :math:`P_2` graph with an extra, isolated vertex. The second Mycielski
- graph is the :math:`P_2` graph, so the first two are hard coded.
- The remaining graphs are generated using the Mycielski operation.
- """
- if n < 1:
- raise nx.NetworkXError("must satisfy n >= 0")
- if n == 1:
- return nx.empty_graph(1)
- else:
- return mycielskian(nx.path_graph(2), n - 2)
|