123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- """Functions for generating grid graphs and lattices
- The :func:`grid_2d_graph`, :func:`triangular_lattice_graph`, and
- :func:`hexagonal_lattice_graph` functions correspond to the three
- `regular tilings of the plane`_, the square, triangular, and hexagonal
- tilings, respectively. :func:`grid_graph` and :func:`hypercube_graph`
- are similar for arbitrary dimensions. Useful relevant discussion can
- be found about `Triangular Tiling`_, and `Square, Hex and Triangle Grids`_
- .. _regular tilings of the plane: https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Euclidean_tilings
- .. _Square, Hex and Triangle Grids: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
- .. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
- """
- from itertools import repeat
- from math import sqrt
- from networkx.classes import set_node_attributes
- from networkx.exception import NetworkXError
- from networkx.generators.classic import cycle_graph, empty_graph, path_graph
- from networkx.relabel import relabel_nodes
- from networkx.utils import flatten, nodes_or_number, pairwise
- __all__ = [
- "grid_2d_graph",
- "grid_graph",
- "hypercube_graph",
- "triangular_lattice_graph",
- "hexagonal_lattice_graph",
- ]
- @nodes_or_number([0, 1])
- def grid_2d_graph(m, n, periodic=False, create_using=None):
- """Returns the two-dimensional grid graph.
- The grid graph has each node connected to its four nearest neighbors.
- Parameters
- ----------
- m, n : int or iterable container of nodes
- If an integer, nodes are from `range(n)`.
- If a container, elements become the coordinate of the nodes.
- periodic : bool or iterable
- If `periodic` is True, both dimensions are periodic. If False, none
- are periodic. If `periodic` is iterable, it should yield 2 bool
- values indicating whether the 1st and 2nd axes, respectively, are
- periodic.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- NetworkX graph
- The (possibly periodic) grid graph of the specified dimensions.
- """
- G = empty_graph(0, create_using)
- row_name, rows = m
- col_name, cols = n
- G.add_nodes_from((i, j) for i in rows for j in cols)
- G.add_edges_from(((i, j), (pi, j)) for pi, i in pairwise(rows) for j in cols)
- G.add_edges_from(((i, j), (i, pj)) for i in rows for pj, j in pairwise(cols))
- try:
- periodic_r, periodic_c = periodic
- except TypeError:
- periodic_r = periodic_c = periodic
- if periodic_r and len(rows) > 2:
- first = rows[0]
- last = rows[-1]
- G.add_edges_from(((first, j), (last, j)) for j in cols)
- if periodic_c and len(cols) > 2:
- first = cols[0]
- last = cols[-1]
- G.add_edges_from(((i, first), (i, last)) for i in rows)
- # both directions for directed
- if G.is_directed():
- G.add_edges_from((v, u) for u, v in G.edges())
- return G
- def grid_graph(dim, periodic=False):
- """Returns the *n*-dimensional grid graph.
- The dimension *n* is the length of the list `dim` and the size in
- each dimension is the value of the corresponding list element.
- Parameters
- ----------
- dim : list or tuple of numbers or iterables of nodes
- 'dim' is a tuple or list with, for each dimension, either a number
- that is the size of that dimension or an iterable of nodes for
- that dimension. The dimension of the grid_graph is the length
- of `dim`.
- periodic : bool or iterable
- If `periodic` is True, all dimensions are periodic. If False all
- dimensions are not periodic. If `periodic` is iterable, it should
- yield `dim` bool values each of which indicates whether the
- corresponding axis is periodic.
- Returns
- -------
- NetworkX graph
- The (possibly periodic) grid graph of the specified dimensions.
- Examples
- --------
- To produce a 2 by 3 by 4 grid graph, a graph on 24 nodes:
- >>> from networkx import grid_graph
- >>> G = grid_graph(dim=(2, 3, 4))
- >>> len(G)
- 24
- >>> G = grid_graph(dim=(range(7, 9), range(3, 6)))
- >>> len(G)
- 6
- """
- from networkx.algorithms.operators.product import cartesian_product
- if not dim:
- return empty_graph(0)
- try:
- func = (cycle_graph if p else path_graph for p in periodic)
- except TypeError:
- func = repeat(cycle_graph if periodic else path_graph)
- G = next(func)(dim[0])
- for current_dim in dim[1:]:
- Gnew = next(func)(current_dim)
- G = cartesian_product(Gnew, G)
- # graph G is done but has labels of the form (1, (2, (3, 1))) so relabel
- H = relabel_nodes(G, flatten)
- return H
- def hypercube_graph(n):
- """Returns the *n*-dimensional hypercube graph.
- The nodes are the integers between 0 and ``2 ** n - 1``, inclusive.
- For more information on the hypercube graph, see the Wikipedia
- article `Hypercube graph`_.
- .. _Hypercube graph: https://en.wikipedia.org/wiki/Hypercube_graph
- Parameters
- ----------
- n : int
- The dimension of the hypercube.
- The number of nodes in the graph will be ``2 ** n``.
- Returns
- -------
- NetworkX graph
- The hypercube graph of dimension *n*.
- """
- dim = n * [2]
- G = grid_graph(dim)
- return G
- def triangular_lattice_graph(
- m, n, periodic=False, with_positions=True, create_using=None
- ):
- r"""Returns the $m$ by $n$ triangular lattice graph.
- The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in
- which each square unit has a diagonal edge (each grid unit has a chord).
- The returned graph has $m$ rows and $n$ columns of triangles. Rows and
- columns include both triangles pointing up and down. Rows form a strip
- of constant height. Columns form a series of diamond shapes, staggered
- with the columns on either side. Another way to state the size is that
- the nodes form a grid of `m+1` rows and `(n + 1) // 2` columns.
- The odd row nodes are shifted horizontally relative to the even rows.
- Directed graph types have edges pointed up or right.
- Positions of nodes are computed by default or `with_positions is True`.
- The position of each node (embedded in a euclidean plane) is stored in
- the graph using equilateral triangles with sidelength 1.
- The height between rows of nodes is thus $\sqrt(3)/2$.
- Nodes lie in the first quadrant with the node $(0, 0)$ at the origin.
- .. _triangular lattice graph: http://mathworld.wolfram.com/TriangularGrid.html
- .. _grid graph: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
- .. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
- Parameters
- ----------
- m : int
- The number of rows in the lattice.
- n : int
- The number of columns in the lattice.
- periodic : bool (default: False)
- If True, join the boundary vertices of the grid using periodic
- boundary conditions. The join between boundaries is the final row
- and column of triangles. This means there is one row and one column
- fewer nodes for the periodic lattice. Periodic lattices require
- `m >= 3`, `n >= 5` and are allowed but misaligned if `m` or `n` are odd
- with_positions : bool (default: True)
- Store the coordinates of each node in the graph node attribute 'pos'.
- The coordinates provide a lattice with equilateral triangles.
- Periodic positions shift the nodes vertically in a nonlinear way so
- the edges don't overlap so much.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- NetworkX graph
- The *m* by *n* triangular lattice graph.
- """
- H = empty_graph(0, create_using)
- if n == 0 or m == 0:
- return H
- if periodic:
- if n < 5 or m < 3:
- msg = f"m > 2 and n > 4 required for periodic. m={m}, n={n}"
- raise NetworkXError(msg)
- N = (n + 1) // 2 # number of nodes in row
- rows = range(m + 1)
- cols = range(N + 1)
- # Make grid
- H.add_edges_from(((i, j), (i + 1, j)) for j in rows for i in cols[:N])
- H.add_edges_from(((i, j), (i, j + 1)) for j in rows[:m] for i in cols)
- # add diagonals
- H.add_edges_from(((i, j), (i + 1, j + 1)) for j in rows[1:m:2] for i in cols[:N])
- H.add_edges_from(((i + 1, j), (i, j + 1)) for j in rows[:m:2] for i in cols[:N])
- # identify boundary nodes if periodic
- from networkx.algorithms.minors import contracted_nodes
- if periodic is True:
- for i in cols:
- H = contracted_nodes(H, (i, 0), (i, m))
- for j in rows[:m]:
- H = contracted_nodes(H, (0, j), (N, j))
- elif n % 2:
- # remove extra nodes
- H.remove_nodes_from((N, j) for j in rows[1::2])
- # Add position node attributes
- if with_positions:
- ii = (i for i in cols for j in rows)
- jj = (j for i in cols for j in rows)
- xx = (0.5 * (j % 2) + i for i in cols for j in rows)
- h = sqrt(3) / 2
- if periodic:
- yy = (h * j + 0.01 * i * i for i in cols for j in rows)
- else:
- yy = (h * j for i in cols for j in rows)
- pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in H}
- set_node_attributes(H, pos, "pos")
- return H
- def hexagonal_lattice_graph(
- m, n, periodic=False, with_positions=True, create_using=None
- ):
- """Returns an `m` by `n` hexagonal lattice graph.
- The *hexagonal lattice graph* is a graph whose nodes and edges are
- the `hexagonal tiling`_ of the plane.
- The returned graph will have `m` rows and `n` columns of hexagons.
- `Odd numbered columns`_ are shifted up relative to even numbered columns.
- Positions of nodes are computed by default or `with_positions is True`.
- Node positions creating the standard embedding in the plane
- with sidelength 1 and are stored in the node attribute 'pos'.
- `pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing.
- .. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling
- .. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
- Parameters
- ----------
- m : int
- The number of rows of hexagons in the lattice.
- n : int
- The number of columns of hexagons in the lattice.
- periodic : bool
- Whether to make a periodic grid by joining the boundary vertices.
- For this to work `n` must be even and both `n > 1` and `m > 1`.
- The periodic connections create another row and column of hexagons
- so these graphs have fewer nodes as boundary nodes are identified.
- with_positions : bool (default: True)
- Store the coordinates of each node in the graph node attribute 'pos'.
- The coordinates provide a lattice with vertical columns of hexagons
- offset to interleave and cover the plane.
- Periodic positions shift the nodes vertically in a nonlinear way so
- the edges don't overlap so much.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- If graph is directed, edges will point up or right.
- Returns
- -------
- NetworkX graph
- The *m* by *n* hexagonal lattice graph.
- """
- G = empty_graph(0, create_using)
- if m == 0 or n == 0:
- return G
- if periodic and (n % 2 == 1 or m < 2 or n < 2):
- msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n"
- raise NetworkXError(msg)
- M = 2 * m # twice as many nodes as hexagons vertically
- rows = range(M + 2)
- cols = range(n + 1)
- # make lattice
- col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[: M + 1])
- row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows if i % 2 == j % 2)
- G.add_edges_from(col_edges)
- G.add_edges_from(row_edges)
- # Remove corner nodes with one edge
- G.remove_node((0, M + 1))
- G.remove_node((n, (M + 1) * (n % 2)))
- # identify boundary nodes if periodic
- from networkx.algorithms.minors import contracted_nodes
- if periodic:
- for i in cols[:n]:
- G = contracted_nodes(G, (i, 0), (i, M))
- for i in cols[1:]:
- G = contracted_nodes(G, (i, 1), (i, M + 1))
- for j in rows[1:M]:
- G = contracted_nodes(G, (0, j), (n, j))
- G.remove_node((n, M))
- # calc position in embedded space
- ii = (i for i in cols for j in rows)
- jj = (j for i in cols for j in rows)
- xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - 0.5) for i in cols for j in rows)
- h = sqrt(3) / 2
- if periodic:
- yy = (h * j + 0.01 * i * i for i in cols for j in rows)
- else:
- yy = (h * j for i in cols for j in rows)
- # exclude nodes not in G
- pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G}
- set_node_attributes(G, pos, "pos")
- return G
|