internet_as_graphs.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. """Generates graphs resembling the Internet Autonomous System network"""
  2. import networkx as nx
  3. from networkx.utils import py_random_state
  4. __all__ = ["random_internet_as_graph"]
  5. def uniform_int_from_avg(a, m, seed):
  6. """Pick a random integer with uniform probability.
  7. Returns a random integer uniformly taken from a distribution with
  8. minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
  9. b = 2*m - a.
  10. Notes
  11. -----
  12. p = (b-floor(b))/2
  13. X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
  14. E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
  15. """
  16. from math import floor
  17. assert m >= a
  18. b = 2 * m - a
  19. p = (b - floor(b)) / 2
  20. X1 = round(seed.random() * (floor(b) - a) + a)
  21. if seed.random() < p:
  22. X2 = 1
  23. else:
  24. X2 = 0
  25. return X1 + X2
  26. def choose_pref_attach(degs, seed):
  27. """Pick a random value, with a probability given by its weight.
  28. Returns a random choice among degs keys, each of which has a
  29. probability proportional to the corresponding dictionary value.
  30. Parameters
  31. ----------
  32. degs: dictionary
  33. It contains the possible values (keys) and the corresponding
  34. probabilities (values)
  35. seed: random state
  36. Returns
  37. -------
  38. v: object
  39. A key of degs or None if degs is empty
  40. """
  41. if len(degs) == 0:
  42. return None
  43. s = sum(degs.values())
  44. if s == 0:
  45. return seed.choice(list(degs.keys()))
  46. v = seed.random() * s
  47. nodes = list(degs.keys())
  48. i = 0
  49. acc = degs[nodes[i]]
  50. while v > acc:
  51. i += 1
  52. acc += degs[nodes[i]]
  53. return nodes[i]
  54. class AS_graph_generator:
  55. """Generates random internet AS graphs."""
  56. def __init__(self, n, seed):
  57. """Initializes variables. Immediate numbers are taken from [1].
  58. Parameters
  59. ----------
  60. n: integer
  61. Number of graph nodes
  62. seed: random state
  63. Indicator of random number generation state.
  64. See :ref:`Randomness<randomness>`.
  65. Returns
  66. -------
  67. GG: AS_graph_generator object
  68. References
  69. ----------
  70. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
  71. BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
  72. in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
  73. """
  74. self.seed = seed
  75. self.n_t = min(n, round(self.seed.random() * 2 + 4)) # num of T nodes
  76. self.n_m = round(0.15 * n) # number of M nodes
  77. self.n_cp = round(0.05 * n) # number of CP nodes
  78. self.n_c = max(0, n - self.n_t - self.n_m - self.n_cp) # number of C nodes
  79. self.d_m = 2 + (2.5 * n) / 10000 # average multihoming degree for M nodes
  80. self.d_cp = 2 + (1.5 * n) / 10000 # avg multihoming degree for CP nodes
  81. self.d_c = 1 + (5 * n) / 100000 # average multihoming degree for C nodes
  82. self.p_m_m = 1 + (2 * n) / 10000 # avg num of peer edges between M and M
  83. self.p_cp_m = 0.2 + (2 * n) / 10000 # avg num of peer edges between CP, M
  84. self.p_cp_cp = 0.05 + (2 * n) / 100000 # avg num of peer edges btwn CP, CP
  85. self.t_m = 0.375 # probability M's provider is T
  86. self.t_cp = 0.375 # probability CP's provider is T
  87. self.t_c = 0.125 # probability C's provider is T
  88. def t_graph(self):
  89. """Generates the core mesh network of tier one nodes of a AS graph.
  90. Returns
  91. -------
  92. G: Networkx Graph
  93. Core network
  94. """
  95. self.G = nx.Graph()
  96. for i in range(self.n_t):
  97. self.G.add_node(i, type="T")
  98. for r in self.regions:
  99. self.regions[r].add(i)
  100. for j in self.G.nodes():
  101. if i != j:
  102. self.add_edge(i, j, "peer")
  103. self.customers[i] = set()
  104. self.providers[i] = set()
  105. return self.G
  106. def add_edge(self, i, j, kind):
  107. if kind == "transit":
  108. customer = str(i)
  109. else:
  110. customer = "none"
  111. self.G.add_edge(i, j, type=kind, customer=customer)
  112. def choose_peer_pref_attach(self, node_list):
  113. """Pick a node with a probability weighted by its peer degree.
  114. Pick a node from node_list with preferential attachment
  115. computed only on their peer degree
  116. """
  117. d = {}
  118. for n in node_list:
  119. d[n] = self.G.nodes[n]["peers"]
  120. return choose_pref_attach(d, self.seed)
  121. def choose_node_pref_attach(self, node_list):
  122. """Pick a node with a probability weighted by its degree.
  123. Pick a node from node_list with preferential attachment
  124. computed on their degree
  125. """
  126. degs = dict(self.G.degree(node_list))
  127. return choose_pref_attach(degs, self.seed)
  128. def add_customer(self, i, j):
  129. """Keep the dictionaries 'customers' and 'providers' consistent."""
  130. self.customers[j].add(i)
  131. self.providers[i].add(j)
  132. for z in self.providers[j]:
  133. self.customers[z].add(i)
  134. self.providers[i].add(z)
  135. def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
  136. """Add a node and its customer transit edges to the graph.
  137. Parameters
  138. ----------
  139. i: object
  140. Identifier of the new node
  141. kind: string
  142. Type of the new node. Options are: 'M' for middle node, 'CP' for
  143. content provider and 'C' for customer.
  144. reg2prob: float
  145. Probability the new node can be in two different regions.
  146. avg_deg: float
  147. Average number of transit nodes of which node i is customer.
  148. t_edge_prob: float
  149. Probability node i establish a customer transit edge with a tier
  150. one (T) node
  151. Returns
  152. -------
  153. i: object
  154. Identifier of the new node
  155. """
  156. regs = 1 # regions in which node resides
  157. if self.seed.random() < reg2prob: # node is in two regions
  158. regs = 2
  159. node_options = set()
  160. self.G.add_node(i, type=kind, peers=0)
  161. self.customers[i] = set()
  162. self.providers[i] = set()
  163. self.nodes[kind].add(i)
  164. for r in self.seed.sample(list(self.regions), regs):
  165. node_options = node_options.union(self.regions[r])
  166. self.regions[r].add(i)
  167. edge_num = uniform_int_from_avg(1, avg_deg, self.seed)
  168. t_options = node_options.intersection(self.nodes["T"])
  169. m_options = node_options.intersection(self.nodes["M"])
  170. if i in m_options:
  171. m_options.remove(i)
  172. d = 0
  173. while d < edge_num and (len(t_options) > 0 or len(m_options) > 0):
  174. if len(m_options) == 0 or (
  175. len(t_options) > 0 and self.seed.random() < t_edge_prob
  176. ): # add edge to a T node
  177. j = self.choose_node_pref_attach(t_options)
  178. t_options.remove(j)
  179. else:
  180. j = self.choose_node_pref_attach(m_options)
  181. m_options.remove(j)
  182. self.add_edge(i, j, "transit")
  183. self.add_customer(i, j)
  184. d += 1
  185. return i
  186. def add_m_peering_link(self, m, to_kind):
  187. """Add a peering link between two middle tier (M) nodes.
  188. Target node j is drawn considering a preferential attachment based on
  189. other M node peering degree.
  190. Parameters
  191. ----------
  192. m: object
  193. Node identifier
  194. to_kind: string
  195. type for target node j (must be always M)
  196. Returns
  197. -------
  198. success: boolean
  199. """
  200. # candidates are of type 'M' and are not customers of m
  201. node_options = self.nodes["M"].difference(self.customers[m])
  202. # candidates are not providers of m
  203. node_options = node_options.difference(self.providers[m])
  204. # remove self
  205. if m in node_options:
  206. node_options.remove(m)
  207. # remove candidates we are already connected to
  208. for j in self.G.neighbors(m):
  209. if j in node_options:
  210. node_options.remove(j)
  211. if len(node_options) > 0:
  212. j = self.choose_peer_pref_attach(node_options)
  213. self.add_edge(m, j, "peer")
  214. self.G.nodes[m]["peers"] += 1
  215. self.G.nodes[j]["peers"] += 1
  216. return True
  217. else:
  218. return False
  219. def add_cp_peering_link(self, cp, to_kind):
  220. """Add a peering link to a content provider (CP) node.
  221. Target node j can be CP or M and it is drawn uniformly among the nodes
  222. belonging to the same region as cp.
  223. Parameters
  224. ----------
  225. cp: object
  226. Node identifier
  227. to_kind: string
  228. type for target node j (must be M or CP)
  229. Returns
  230. -------
  231. success: boolean
  232. """
  233. node_options = set()
  234. for r in self.regions: # options include nodes in the same region(s)
  235. if cp in self.regions[r]:
  236. node_options = node_options.union(self.regions[r])
  237. # options are restricted to the indicated kind ('M' or 'CP')
  238. node_options = self.nodes[to_kind].intersection(node_options)
  239. # remove self
  240. if cp in node_options:
  241. node_options.remove(cp)
  242. # remove nodes that are cp's providers
  243. node_options = node_options.difference(self.providers[cp])
  244. # remove nodes we are already connected to
  245. for j in self.G.neighbors(cp):
  246. if j in node_options:
  247. node_options.remove(j)
  248. if len(node_options) > 0:
  249. j = self.seed.sample(list(node_options), 1)[0]
  250. self.add_edge(cp, j, "peer")
  251. self.G.nodes[cp]["peers"] += 1
  252. self.G.nodes[j]["peers"] += 1
  253. return True
  254. else:
  255. return False
  256. def graph_regions(self, rn):
  257. """Initializes AS network regions.
  258. Parameters
  259. ----------
  260. rn: integer
  261. Number of regions
  262. """
  263. self.regions = {}
  264. for i in range(rn):
  265. self.regions["REG" + str(i)] = set()
  266. def add_peering_links(self, from_kind, to_kind):
  267. """Utility function to add peering links among node groups."""
  268. peer_link_method = None
  269. if from_kind == "M":
  270. peer_link_method = self.add_m_peering_link
  271. m = self.p_m_m
  272. if from_kind == "CP":
  273. peer_link_method = self.add_cp_peering_link
  274. if to_kind == "M":
  275. m = self.p_cp_m
  276. else:
  277. m = self.p_cp_cp
  278. for i in self.nodes[from_kind]:
  279. num = uniform_int_from_avg(0, m, self.seed)
  280. for _ in range(num):
  281. peer_link_method(i, to_kind)
  282. def generate(self):
  283. """Generates a random AS network graph as described in [1].
  284. Returns
  285. -------
  286. G: Graph object
  287. Notes
  288. -----
  289. The process steps are the following: first we create the core network
  290. of tier one nodes, then we add the middle tier (M), the content
  291. provider (CP) and the customer (C) nodes along with their transit edges
  292. (link i,j means i is customer of j). Finally we add peering links
  293. between M nodes, between M and CP nodes and between CP node couples.
  294. For a detailed description of the algorithm, please refer to [1].
  295. References
  296. ----------
  297. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
  298. BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
  299. in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
  300. """
  301. self.graph_regions(5)
  302. self.customers = {}
  303. self.providers = {}
  304. self.nodes = {"T": set(), "M": set(), "CP": set(), "C": set()}
  305. self.t_graph()
  306. self.nodes["T"] = set(self.G.nodes())
  307. i = len(self.nodes["T"])
  308. for _ in range(self.n_m):
  309. self.nodes["M"].add(self.add_node(i, "M", 0.2, self.d_m, self.t_m))
  310. i += 1
  311. for _ in range(self.n_cp):
  312. self.nodes["CP"].add(self.add_node(i, "CP", 0.05, self.d_cp, self.t_cp))
  313. i += 1
  314. for _ in range(self.n_c):
  315. self.nodes["C"].add(self.add_node(i, "C", 0, self.d_c, self.t_c))
  316. i += 1
  317. self.add_peering_links("M", "M")
  318. self.add_peering_links("CP", "M")
  319. self.add_peering_links("CP", "CP")
  320. return self.G
  321. @py_random_state(1)
  322. def random_internet_as_graph(n, seed=None):
  323. """Generates a random undirected graph resembling the Internet AS network
  324. Parameters
  325. ----------
  326. n: integer in [1000, 10000]
  327. Number of graph nodes
  328. seed : integer, random_state, or None (default)
  329. Indicator of random number generation state.
  330. See :ref:`Randomness<randomness>`.
  331. Returns
  332. -------
  333. G: Networkx Graph object
  334. A randomly generated undirected graph
  335. Notes
  336. -----
  337. This algorithm returns an undirected graph resembling the Internet
  338. Autonomous System (AS) network, it uses the approach by Elmokashfi et al.
  339. [1]_ and it grants the properties described in the related paper [1]_.
  340. Each node models an autonomous system, with an attribute 'type' specifying
  341. its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
  342. Each edge models an ADV communication link (hence, bidirectional) with
  343. attributes:
  344. - type: transit|peer, the kind of commercial agreement between nodes;
  345. - customer: <node id>, the identifier of the node acting as customer
  346. ('none' if type is peer).
  347. References
  348. ----------
  349. .. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
  350. BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
  351. in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
  352. """
  353. GG = AS_graph_generator(n, seed)
  354. G = GG.generate()
  355. return G