123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963 |
- """Base class for MultiDiGraph."""
- from copy import deepcopy
- from functools import cached_property
- import networkx as nx
- from networkx import convert
- from networkx.classes.coreviews import MultiAdjacencyView
- from networkx.classes.digraph import DiGraph
- from networkx.classes.multigraph import MultiGraph
- from networkx.classes.reportviews import (
- DiMultiDegreeView,
- InMultiDegreeView,
- InMultiEdgeView,
- OutMultiDegreeView,
- OutMultiEdgeView,
- )
- from networkx.exception import NetworkXError
- __all__ = ["MultiDiGraph"]
- class MultiDiGraph(MultiGraph, DiGraph):
- """A directed graph class that can store multiedges.
- Multiedges are multiple edges between two nodes. Each edge
- can hold optional data or attributes.
- A MultiDiGraph holds directed edges. Self loops are allowed.
- Nodes can be arbitrary (hashable) Python objects with optional
- key/value attributes. By convention `None` is not used as a node.
- Edges are represented as links between nodes with optional
- key/value attributes.
- Parameters
- ----------
- incoming_graph_data : input graph (optional, default: None)
- Data to initialize graph. If None (default) an empty
- graph is created. The data can be any format that is supported
- by the to_networkx_graph() function, currently including edge list,
- dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
- sparse matrix, or PyGraphviz graph.
- multigraph_input : bool or None (default None)
- Note: Only used when `incoming_graph_data` is a dict.
- If True, `incoming_graph_data` is assumed to be a
- dict-of-dict-of-dict-of-dict structure keyed by
- node to neighbor to edge keys to edge data for multi-edges.
- A NetworkXError is raised if this is not the case.
- If False, :func:`to_networkx_graph` is used to try to determine
- the dict's graph data structure as either a dict-of-dict-of-dict
- keyed by node to neighbor to edge data, or a dict-of-iterable
- keyed by node to neighbors.
- If None, the treatment for True is tried, but if it fails,
- the treatment for False is tried.
- attr : keyword arguments, optional (default= no attributes)
- Attributes to add to graph as key=value pairs.
- See Also
- --------
- Graph
- DiGraph
- MultiGraph
- Examples
- --------
- Create an empty graph structure (a "null graph") with no nodes and
- no edges.
- >>> G = nx.MultiDiGraph()
- G can be grown in several ways.
- **Nodes:**
- Add one node at a time:
- >>> G.add_node(1)
- Add the nodes from any container (a list, dict, set or
- even the lines from a file or the nodes from another graph).
- >>> G.add_nodes_from([2, 3])
- >>> G.add_nodes_from(range(100, 110))
- >>> H = nx.path_graph(10)
- >>> G.add_nodes_from(H)
- In addition to strings and integers any hashable Python object
- (except None) can represent a node, e.g. a customized node object,
- or even another Graph.
- >>> G.add_node(H)
- **Edges:**
- G can also be grown by adding edges.
- Add one edge,
- >>> key = G.add_edge(1, 2)
- a list of edges,
- >>> keys = G.add_edges_from([(1, 2), (1, 3)])
- or a collection of edges,
- >>> keys = G.add_edges_from(H.edges)
- If some edges connect nodes not yet in the graph, the nodes
- are added automatically. If an edge already exists, an additional
- edge is created and stored using a key to identify the edge.
- By default the key is the lowest unused integer.
- >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
- >>> G[4]
- AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
- **Attributes:**
- Each graph, node, and edge can hold key/value attribute pairs
- in an associated attribute dictionary (the keys must be hashable).
- By default these are empty, but can be added or changed using
- add_edge, add_node or direct manipulation of the attribute
- dictionaries named graph, node and edge respectively.
- >>> G = nx.MultiDiGraph(day="Friday")
- >>> G.graph
- {'day': 'Friday'}
- Add node attributes using add_node(), add_nodes_from() or G.nodes
- >>> G.add_node(1, time="5pm")
- >>> G.add_nodes_from([3], time="2pm")
- >>> G.nodes[1]
- {'time': '5pm'}
- >>> G.nodes[1]["room"] = 714
- >>> del G.nodes[1]["room"] # remove attribute
- >>> list(G.nodes(data=True))
- [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
- Add edge attributes using add_edge(), add_edges_from(), subscript
- notation, or G.edges.
- >>> key = G.add_edge(1, 2, weight=4.7)
- >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
- >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
- >>> G[1][2][0]["weight"] = 4.7
- >>> G.edges[1, 2, 0]["weight"] = 4
- Warning: we protect the graph data structure by making `G.edges[1,
- 2, 0]` a read-only dict-like structure. However, you can assign to
- attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
- to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
- (for multigraphs the edge key is required: `MG.edges[u, v,
- key][name] = value`).
- **Shortcuts:**
- Many common graph features allow python syntax to speed reporting.
- >>> 1 in G # check if node in graph
- True
- >>> [n for n in G if n < 3] # iterate through nodes
- [1, 2]
- >>> len(G) # number of nodes in graph
- 5
- >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
- AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
- Often the best way to traverse all edges of a graph is via the neighbors.
- The neighbors are available as an adjacency-view `G.adj` object or via
- the method `G.adjacency()`.
- >>> for n, nbrsdict in G.adjacency():
- ... for nbr, keydict in nbrsdict.items():
- ... for key, eattr in keydict.items():
- ... if "weight" in eattr:
- ... # Do something useful with the edges
- ... pass
- But the edges() method is often more convenient:
- >>> for u, v, keys, weight in G.edges(data="weight", keys=True):
- ... if weight is not None:
- ... # Do something useful with the edges
- ... pass
- **Reporting:**
- Simple graph information is obtained using methods and object-attributes.
- Reporting usually provides views instead of containers to reduce memory
- usage. The views update as the graph is updated similarly to dict-views.
- The objects `nodes`, `edges` and `adj` provide access to data attributes
- via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
- (e.g. `nodes.items()`, `nodes.data('color')`,
- `nodes.data('color', default='blue')` and similarly for `edges`)
- Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
- For details on these and other miscellaneous methods, see below.
- **Subclasses (Advanced):**
- The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
- The outer dict (node_dict) holds adjacency information keyed by node.
- The next dict (adjlist_dict) represents the adjacency information
- and holds edge_key dicts keyed by neighbor. The edge_key dict holds
- each edge_attr dict keyed by edge key. The inner dict
- (edge_attr_dict) represents the edge data and holds edge attribute
- values keyed by attribute names.
- Each of these four dicts in the dict-of-dict-of-dict-of-dict
- structure can be replaced by a user defined dict-like object.
- In general, the dict-like features should be maintained but
- extra features can be added. To replace one of the dicts create
- a new graph class by changing the class(!) variable holding the
- factory for that dict-like structure. The variable names are
- node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
- adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
- and graph_attr_dict_factory.
- node_dict_factory : function, (default: dict)
- Factory function to be used to create the dict containing node
- attributes, keyed by node id.
- It should require no arguments and return a dict-like object
- node_attr_dict_factory: function, (default: dict)
- Factory function to be used to create the node attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object
- adjlist_outer_dict_factory : function, (default: dict)
- Factory function to be used to create the outer-most dict
- in the data structure that holds adjacency info keyed by node.
- It should require no arguments and return a dict-like object.
- adjlist_inner_dict_factory : function, (default: dict)
- Factory function to be used to create the adjacency list
- dict which holds multiedge key dicts keyed by neighbor.
- It should require no arguments and return a dict-like object.
- edge_key_dict_factory : function, (default: dict)
- Factory function to be used to create the edge key dict
- which holds edge data keyed by edge key.
- It should require no arguments and return a dict-like object.
- edge_attr_dict_factory : function, (default: dict)
- Factory function to be used to create the edge attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object.
- graph_attr_dict_factory : function, (default: dict)
- Factory function to be used to create the graph attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object.
- Typically, if your extension doesn't impact the data structure all
- methods will inherited without issue except: `to_directed/to_undirected`.
- By default these methods create a DiGraph/Graph class and you probably
- want them to create your extension of a DiGraph/Graph. To facilitate
- this we define two class variables that you can set in your subclass.
- to_directed_class : callable, (default: DiGraph or MultiDiGraph)
- Class to create a new graph structure in the `to_directed` method.
- If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
- to_undirected_class : callable, (default: Graph or MultiGraph)
- Class to create a new graph structure in the `to_undirected` method.
- If `None`, a NetworkX class (Graph or MultiGraph) is used.
- **Subclassing Example**
- Create a low memory graph class that effectively disallows edge
- attributes by using a single attribute dict for all edges.
- This reduces the memory used, but you lose edge attributes.
- >>> class ThinGraph(nx.Graph):
- ... all_edge_dict = {"weight": 1}
- ...
- ... def single_edge_dict(self):
- ... return self.all_edge_dict
- ...
- ... edge_attr_dict_factory = single_edge_dict
- >>> G = ThinGraph()
- >>> G.add_edge(2, 1)
- >>> G[2][1]
- {'weight': 1}
- >>> G.add_edge(2, 2)
- >>> G[2][1] is G[2][2]
- True
- """
- # node_dict_factory = dict # already assigned in Graph
- # adjlist_outer_dict_factory = dict
- # adjlist_inner_dict_factory = dict
- edge_key_dict_factory = dict
- # edge_attr_dict_factory = dict
- def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
- """Initialize a graph with edges, name, or graph attributes.
- Parameters
- ----------
- incoming_graph_data : input graph
- Data to initialize graph. If incoming_graph_data=None (default)
- an empty graph is created. The data can be an edge list, or any
- NetworkX graph object. If the corresponding optional Python
- packages are installed the data can also be a 2D NumPy array, a
- SciPy sparse array, or a PyGraphviz graph.
- multigraph_input : bool or None (default None)
- Note: Only used when `incoming_graph_data` is a dict.
- If True, `incoming_graph_data` is assumed to be a
- dict-of-dict-of-dict-of-dict structure keyed by
- node to neighbor to edge keys to edge data for multi-edges.
- A NetworkXError is raised if this is not the case.
- If False, :func:`to_networkx_graph` is used to try to determine
- the dict's graph data structure as either a dict-of-dict-of-dict
- keyed by node to neighbor to edge data, or a dict-of-iterable
- keyed by node to neighbors.
- If None, the treatment for True is tried, but if it fails,
- the treatment for False is tried.
- attr : keyword arguments, optional (default= no attributes)
- Attributes to add to graph as key=value pairs.
- See Also
- --------
- convert
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G = nx.Graph(name="my graph")
- >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
- >>> G = nx.Graph(e)
- Arbitrary graph attribute pairs (key=value) may be assigned
- >>> G = nx.Graph(e, day="Friday")
- >>> G.graph
- {'day': 'Friday'}
- """
- # multigraph_input can be None/True/False. So check "is not False"
- if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
- DiGraph.__init__(self)
- try:
- convert.from_dict_of_dicts(
- incoming_graph_data, create_using=self, multigraph_input=True
- )
- self.graph.update(attr)
- except Exception as err:
- if multigraph_input is True:
- raise nx.NetworkXError(
- f"converting multigraph_input raised:\n{type(err)}: {err}"
- )
- DiGraph.__init__(self, incoming_graph_data, **attr)
- else:
- DiGraph.__init__(self, incoming_graph_data, **attr)
- @cached_property
- def adj(self):
- """Graph adjacency object holding the neighbors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
- the color of the edge `(3, 2, 0)` to `"blue"`.
- Iterating over G.adj behaves like a dict. Useful idioms include
- `for nbr, datadict in G.adj[n].items():`.
- The neighbor information is also provided by subscripting the graph.
- So `for nbr, foovalue in G[node].data('foo', default=1):` works.
- For directed graphs, `G.adj` holds outgoing (successor) info.
- """
- return MultiAdjacencyView(self._succ)
- @cached_property
- def succ(self):
- """Graph adjacency object holding the successors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
- the color of the edge `(3, 2, 0)` to `"blue"`.
- Iterating over G.adj behaves like a dict. Useful idioms include
- `for nbr, datadict in G.adj[n].items():`.
- The neighbor information is also provided by subscripting the graph.
- So `for nbr, foovalue in G[node].data('foo', default=1):` works.
- For directed graphs, `G.succ` is identical to `G.adj`.
- """
- return MultiAdjacencyView(self._succ)
- @cached_property
- def pred(self):
- """Graph adjacency object holding the predecessors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
- the color of the edge `(3, 2, 0)` to `"blue"`.
- Iterating over G.adj behaves like a dict. Useful idioms include
- `for nbr, datadict in G.adj[n].items():`.
- """
- return MultiAdjacencyView(self._pred)
- def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
- """Add an edge between u and v.
- The nodes u and v will be automatically added if they are
- not already in the graph.
- Edge attributes can be specified with keywords or by directly
- accessing the edge's attribute dictionary. See examples below.
- Parameters
- ----------
- u_for_edge, v_for_edge : nodes
- Nodes can be, for example, strings or numbers.
- Nodes must be hashable (and not None) Python objects.
- key : hashable identifier, optional (default=lowest unused integer)
- Used to distinguish multiedges between a pair of nodes.
- attr : keyword arguments, optional
- Edge data (or labels or objects) can be assigned using
- keyword arguments.
- Returns
- -------
- The edge key assigned to the edge.
- See Also
- --------
- add_edges_from : add a collection of edges
- Notes
- -----
- To replace/update edge data, use the optional key argument
- to identify a unique edge. Otherwise a new edge will be created.
- NetworkX algorithms designed for weighted graphs cannot use
- multigraphs directly because it is not clear how to handle
- multiedge weights. Convert to Graph using edge attribute
- 'weight' to enable weighted graph algorithms.
- Default keys are generated using the method `new_edge_key()`.
- This method can be overridden by subclassing the base class and
- providing a custom `new_edge_key()` method.
- Examples
- --------
- The following all add the edge e=(1, 2) to graph G:
- >>> G = nx.MultiDiGraph()
- >>> e = (1, 2)
- >>> key = G.add_edge(1, 2) # explicit two-node form
- >>> G.add_edge(*e) # single edge as tuple of two nodes
- 1
- >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
- [2]
- Associate data to edges using keywords:
- >>> key = G.add_edge(1, 2, weight=3)
- >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
- >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
- For non-string attribute keys, use subscript notation.
- >>> ekey = G.add_edge(1, 2)
- >>> G[1][2][0].update({0: 5})
- >>> G.edges[1, 2, 0].update({0: 5})
- """
- u, v = u_for_edge, v_for_edge
- # add nodes
- if u not in self._succ:
- if u is None:
- raise ValueError("None cannot be a node")
- self._succ[u] = self.adjlist_inner_dict_factory()
- self._pred[u] = self.adjlist_inner_dict_factory()
- self._node[u] = self.node_attr_dict_factory()
- if v not in self._succ:
- if v is None:
- raise ValueError("None cannot be a node")
- self._succ[v] = self.adjlist_inner_dict_factory()
- self._pred[v] = self.adjlist_inner_dict_factory()
- self._node[v] = self.node_attr_dict_factory()
- if key is None:
- key = self.new_edge_key(u, v)
- if v in self._succ[u]:
- keydict = self._adj[u][v]
- datadict = keydict.get(key, self.edge_attr_dict_factory())
- datadict.update(attr)
- keydict[key] = datadict
- else:
- # selfloops work this way without special treatment
- datadict = self.edge_attr_dict_factory()
- datadict.update(attr)
- keydict = self.edge_key_dict_factory()
- keydict[key] = datadict
- self._succ[u][v] = keydict
- self._pred[v][u] = keydict
- return key
- def remove_edge(self, u, v, key=None):
- """Remove an edge between u and v.
- Parameters
- ----------
- u, v : nodes
- Remove an edge between nodes u and v.
- key : hashable identifier, optional (default=None)
- Used to distinguish multiple edges between a pair of nodes.
- If None, remove a single edge between u and v. If there are
- multiple edges, removes the last edge added in terms of
- insertion order.
- Raises
- ------
- NetworkXError
- If there is not an edge between u and v, or
- if there is no edge with the specified key.
- See Also
- --------
- remove_edges_from : remove a collection of edges
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.remove_edge(0, 1)
- >>> e = (1, 2)
- >>> G.remove_edge(*e) # unpacks e from an edge tuple
- For multiple edges
- >>> G = nx.MultiDiGraph()
- >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
- [0, 1, 2]
- When ``key=None`` (the default), edges are removed in the opposite
- order that they were added:
- >>> G.remove_edge(1, 2)
- >>> G.edges(keys=True)
- OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
- For edges with keys
- >>> G = nx.MultiDiGraph()
- >>> G.add_edge(1, 2, key="first")
- 'first'
- >>> G.add_edge(1, 2, key="second")
- 'second'
- >>> G.remove_edge(1, 2, key="first")
- >>> G.edges(keys=True)
- OutMultiEdgeView([(1, 2, 'second')])
- """
- try:
- d = self._adj[u][v]
- except KeyError as err:
- raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
- # remove the edge with specified data
- if key is None:
- d.popitem()
- else:
- try:
- del d[key]
- except KeyError as err:
- msg = f"The edge {u}-{v} with key {key} is not in the graph."
- raise NetworkXError(msg) from err
- if len(d) == 0:
- # remove the key entries if last edge
- del self._succ[u][v]
- del self._pred[v][u]
- @cached_property
- def edges(self):
- """An OutMultiEdgeView of the Graph as G.edges or G.edges().
- edges(self, nbunch=None, data=False, keys=False, default=None)
- The OutMultiEdgeView provides set-like operations on the edge-tuples
- as well as edge attribute lookup. When called, it also provides
- an EdgeDataView object which allows control of access to edge
- attributes (but does not provide set-like operations).
- Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
- attribute for the edge from ``u`` to ``v`` with key ``k`` while
- ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
- iterates through all the edges yielding the color attribute with
- default `'red'` if no color attribute exists.
- Edges are returned as tuples with optional data and keys
- in the order (node, neighbor, key, data). If ``keys=True`` is not
- provided, the tuples will just be (node, neighbor, data), but
- multiple tuples with the same node and neighbor will be
- generated when multiple edges between two nodes exist.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges from these nodes.
- data : string or bool, optional (default=False)
- The edge attribute returned in 3-tuple (u, v, ddict[data]).
- If True, return edge attribute dict in 3-tuple (u, v, ddict).
- If False, return 2-tuple (u, v).
- keys : bool, optional (default=False)
- If True, return edge keys with each edge, creating (u, v, k,
- d) tuples when data is also requested (the default) and (u,
- v, k) tuples when data is not requested.
- default : value, optional (default=None)
- Value used for edges that don't have the requested attribute.
- Only relevant if data is not True or False.
- Returns
- -------
- edges : OutMultiEdgeView
- A view of edge attributes, usually it iterates over (u, v)
- (u, v, k) or (u, v, k, d) tuples of edges, but can also be
- used for attribute lookup as ``edges[u, v, k]['foo']``.
- Notes
- -----
- Nodes in nbunch that are not in the graph will be (quietly) ignored.
- For directed graphs this returns the out-edges.
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> nx.add_path(G, [0, 1, 2])
- >>> key = G.add_edge(2, 3, weight=5)
- >>> key2 = G.add_edge(1, 2) # second edge between these nodes
- >>> [e for e in G.edges()]
- [(0, 1), (1, 2), (1, 2), (2, 3)]
- >>> list(G.edges(data=True)) # default data is {} (empty dict)
- [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
- >>> list(G.edges(data="weight", default=1))
- [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
- >>> list(G.edges(keys=True)) # default keys are integers
- [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
- >>> list(G.edges(data=True, keys=True))
- [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
- >>> list(G.edges(data="weight", default=1, keys=True))
- [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
- >>> list(G.edges([0, 2]))
- [(0, 1), (2, 3)]
- >>> list(G.edges(0))
- [(0, 1)]
- >>> list(G.edges(1))
- [(1, 2), (1, 2)]
- See Also
- --------
- in_edges, out_edges
- """
- return OutMultiEdgeView(self)
- # alias out_edges to edges
- @cached_property
- def out_edges(self):
- return OutMultiEdgeView(self)
- out_edges.__doc__ = edges.__doc__
- @cached_property
- def in_edges(self):
- """A view of the in edges of the graph as G.in_edges or G.in_edges().
- in_edges(self, nbunch=None, data=False, keys=False, default=None)
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- data : string or bool, optional (default=False)
- The edge attribute returned in 3-tuple (u, v, ddict[data]).
- If True, return edge attribute dict in 3-tuple (u, v, ddict).
- If False, return 2-tuple (u, v).
- keys : bool, optional (default=False)
- If True, return edge keys with each edge, creating 3-tuples
- (u, v, k) or with data, 4-tuples (u, v, k, d).
- default : value, optional (default=None)
- Value used for edges that don't have the requested attribute.
- Only relevant if data is not True or False.
- Returns
- -------
- in_edges : InMultiEdgeView or InMultiEdgeDataView
- A view of edge attributes, usually it iterates over (u, v)
- or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
- used for attribute lookup as `edges[u, v, k]['foo']`.
- See Also
- --------
- edges
- """
- return InMultiEdgeView(self)
- @cached_property
- def degree(self):
- """A DegreeView for the Graph as G.degree or G.degree().
- The node degree is the number of edges adjacent to the node.
- The weighted node degree is the sum of the edge weights for
- edges incident to that node.
- This object provides an iterator for (node, degree) as well as
- lookup for the degree for a single node.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The name of an edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights adjacent to the node.
- Returns
- -------
- DiMultiDegreeView or int
- If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
- mapping nodes to their degree.
- If a single node is requested, returns the degree of the node as an integer.
- See Also
- --------
- out_degree, in_degree
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.degree(0) # node 0 with degree 1
- 1
- >>> list(G.degree([0, 1, 2]))
- [(0, 1), (1, 2), (2, 2)]
- >>> G.add_edge(0, 1) # parallel edge
- 1
- >>> list(G.degree([0, 1, 2])) # parallel edges are counted
- [(0, 2), (1, 3), (2, 2)]
- """
- return DiMultiDegreeView(self)
- @cached_property
- def in_degree(self):
- """A DegreeView for (node, in_degree) or in_degree for single node.
- The node in-degree is the number of edges pointing in to the node.
- The weighted node degree is the sum of the edge weights for
- edges incident to that node.
- This object provides an iterator for (node, degree) as well as
- lookup for the degree for a single node.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights adjacent to the node.
- Returns
- -------
- If a single node is requested
- deg : int
- Degree of the node
- OR if multiple nodes are requested
- nd_iter : iterator
- The iterator returns two-tuples of (node, in-degree).
- See Also
- --------
- degree, out_degree
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.in_degree(0) # node 0 with degree 0
- 0
- >>> list(G.in_degree([0, 1, 2]))
- [(0, 0), (1, 1), (2, 1)]
- >>> G.add_edge(0, 1) # parallel edge
- 1
- >>> list(G.in_degree([0, 1, 2])) # parallel edges counted
- [(0, 0), (1, 2), (2, 1)]
- """
- return InMultiDegreeView(self)
- @cached_property
- def out_degree(self):
- """Returns an iterator for (node, out-degree) or out-degree for single node.
- out_degree(self, nbunch=None, weight=None)
- The node out-degree is the number of edges pointing out of the node.
- This function returns the out-degree for a single node or an iterator
- for a bunch of nodes or if nothing is passed as argument.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights.
- Returns
- -------
- If a single node is requested
- deg : int
- Degree of the node
- OR if multiple nodes are requested
- nd_iter : iterator
- The iterator returns two-tuples of (node, out-degree).
- See Also
- --------
- degree, in_degree
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.out_degree(0) # node 0 with degree 1
- 1
- >>> list(G.out_degree([0, 1, 2]))
- [(0, 1), (1, 1), (2, 1)]
- >>> G.add_edge(0, 1) # parallel edge
- 1
- >>> list(G.out_degree([0, 1, 2])) # counts parallel edges
- [(0, 2), (1, 1), (2, 1)]
- """
- return OutMultiDegreeView(self)
- def is_multigraph(self):
- """Returns True if graph is a multigraph, False otherwise."""
- return True
- def is_directed(self):
- """Returns True if graph is directed, False otherwise."""
- return True
- def to_undirected(self, reciprocal=False, as_view=False):
- """Returns an undirected representation of the digraph.
- Parameters
- ----------
- reciprocal : bool (optional)
- If True only keep edges that appear in both directions
- in the original digraph.
- as_view : bool (optional, default=False)
- If True return an undirected view of the original directed graph.
- Returns
- -------
- G : MultiGraph
- An undirected graph with the same name and nodes and
- with edge (u, v, data) if either (u, v, data) or (v, u, data)
- is in the digraph. If both edges exist in digraph and
- their edge data is different, only one edge is created
- with an arbitrary choice of which edge data to use.
- You must check and correct for this manually if desired.
- See Also
- --------
- MultiGraph, copy, add_edge, add_edges_from
- Notes
- -----
- This returns a "deepcopy" of the edge, node, and
- graph attributes which attempts to completely copy
- all of the data and references.
- This is in contrast to the similar D=MultiDiGraph(G) which
- returns a shallow copy of the data.
- See the Python copy module for more information on shallow
- and deep copies, https://docs.python.org/3/library/copy.html.
- Warning: If you have subclassed MultiDiGraph to use dict-like
- objects in the data structure, those changes do not transfer
- to the MultiGraph created by this method.
- Examples
- --------
- >>> G = nx.path_graph(2) # or MultiGraph, etc
- >>> H = G.to_directed()
- >>> list(H.edges)
- [(0, 1), (1, 0)]
- >>> G2 = H.to_undirected()
- >>> list(G2.edges)
- [(0, 1)]
- """
- graph_class = self.to_undirected_class()
- if as_view is True:
- return nx.graphviews.generic_graph_view(self, graph_class)
- # deepcopy when not a view
- G = graph_class()
- G.graph.update(deepcopy(self.graph))
- G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
- if reciprocal is True:
- G.add_edges_from(
- (u, v, key, deepcopy(data))
- for u, nbrs in self._adj.items()
- for v, keydict in nbrs.items()
- for key, data in keydict.items()
- if v in self._pred[u] and key in self._pred[u][v]
- )
- else:
- G.add_edges_from(
- (u, v, key, deepcopy(data))
- for u, nbrs in self._adj.items()
- for v, keydict in nbrs.items()
- for key, data in keydict.items()
- )
- return G
- def reverse(self, copy=True):
- """Returns the reverse of the graph.
- The reverse is a graph with the same nodes and edges
- but with the directions of the edges reversed.
- Parameters
- ----------
- copy : bool optional (default=True)
- If True, return a new DiGraph holding the reversed edges.
- If False, the reverse graph is created using a view of
- the original graph.
- """
- if copy:
- H = self.__class__()
- H.graph.update(deepcopy(self.graph))
- H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
- H.add_edges_from(
- (v, u, k, deepcopy(d))
- for u, v, k, d in self.edges(keys=True, data=True)
- )
- return H
- return nx.graphviews.reverse_view(self)
|