123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323 |
- """Base class for directed graphs."""
- from copy import deepcopy
- from functools import cached_property
- import networkx as nx
- from networkx import convert
- from networkx.classes.coreviews import AdjacencyView
- from networkx.classes.graph import Graph
- from networkx.classes.reportviews import (
- DiDegreeView,
- InDegreeView,
- InEdgeView,
- OutDegreeView,
- OutEdgeView,
- )
- from networkx.exception import NetworkXError
- __all__ = ["DiGraph"]
- class _CachedPropertyResetterAdjAndSucc:
- """Data Descriptor class that syncs and resets cached properties adj and succ
- The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ`
- are set to new objects. In addition, the attributes `_succ` and `_adj`
- are synced so these two names point to the same object.
- This object sits on a class and ensures that any instance of that
- class clears its cached properties "succ" and "adj" whenever the
- underlying instance attributes "_succ" or "_adj" are set to a new object.
- It only affects the set process of the obj._adj and obj._succ attribute.
- All get/del operations act as they normally would.
- For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
- """
- def __set__(self, obj, value):
- od = obj.__dict__
- od["_adj"] = value
- od["_succ"] = value
- # reset cached properties
- if "adj" in od:
- del od["adj"]
- if "succ" in od:
- del od["succ"]
- class _CachedPropertyResetterPred:
- """Data Descriptor class for _pred that resets ``pred`` cached_property when needed
- This assumes that the ``cached_property`` ``G.pred`` should be reset whenever
- ``G._pred`` is set to a new value.
- This object sits on a class and ensures that any instance of that
- class clears its cached property "pred" whenever the underlying
- instance attribute "_pred" is set to a new object. It only affects
- the set process of the obj._pred attribute. All get/del operations
- act as they normally would.
- For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
- """
- def __set__(self, obj, value):
- od = obj.__dict__
- od["_pred"] = value
- if "pred" in od:
- del od["pred"]
- class DiGraph(Graph):
- """
- Base class for directed graphs.
- A DiGraph stores nodes and edges with optional data, or attributes.
- DiGraphs hold directed edges. Self loops are allowed but multiple
- (parallel) edges are not.
- Nodes can be arbitrary (hashable) Python objects with optional
- key/value attributes. By convention `None` is not used as a node.
- Edges are represented as links between nodes with optional
- key/value attributes.
- Parameters
- ----------
- incoming_graph_data : input graph (optional, default: None)
- Data to initialize graph. If None (default) an empty
- graph is created. The data can be any format that is supported
- by the to_networkx_graph() function, currently including edge list,
- dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
- sparse matrix, or PyGraphviz graph.
- attr : keyword arguments, optional (default= no attributes)
- Attributes to add to graph as key=value pairs.
- See Also
- --------
- Graph
- MultiGraph
- MultiDiGraph
- Examples
- --------
- Create an empty graph structure (a "null graph") with no nodes and
- no edges.
- >>> G = nx.DiGraph()
- G can be grown in several ways.
- **Nodes:**
- Add one node at a time:
- >>> G.add_node(1)
- Add the nodes from any container (a list, dict, set or
- even the lines from a file or the nodes from another graph).
- >>> G.add_nodes_from([2, 3])
- >>> G.add_nodes_from(range(100, 110))
- >>> H = nx.path_graph(10)
- >>> G.add_nodes_from(H)
- In addition to strings and integers any hashable Python object
- (except None) can represent a node, e.g. a customized node object,
- or even another Graph.
- >>> G.add_node(H)
- **Edges:**
- G can also be grown by adding edges.
- Add one edge,
- >>> G.add_edge(1, 2)
- a list of edges,
- >>> G.add_edges_from([(1, 2), (1, 3)])
- or a collection of edges,
- >>> G.add_edges_from(H.edges)
- If some edges connect nodes not yet in the graph, the nodes
- are added automatically. There are no errors when adding
- nodes or edges that already exist.
- **Attributes:**
- Each graph, node, and edge can hold key/value attribute pairs
- in an associated attribute dictionary (the keys must be hashable).
- By default these are empty, but can be added or changed using
- add_edge, add_node or direct manipulation of the attribute
- dictionaries named graph, node and edge respectively.
- >>> G = nx.DiGraph(day="Friday")
- >>> G.graph
- {'day': 'Friday'}
- Add node attributes using add_node(), add_nodes_from() or G.nodes
- >>> G.add_node(1, time="5pm")
- >>> G.add_nodes_from([3], time="2pm")
- >>> G.nodes[1]
- {'time': '5pm'}
- >>> G.nodes[1]["room"] = 714
- >>> del G.nodes[1]["room"] # remove attribute
- >>> list(G.nodes(data=True))
- [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
- Add edge attributes using add_edge(), add_edges_from(), subscript
- notation, or G.edges.
- >>> G.add_edge(1, 2, weight=4.7)
- >>> G.add_edges_from([(3, 4), (4, 5)], color="red")
- >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
- >>> G[1][2]["weight"] = 4.7
- >>> G.edges[1, 2]["weight"] = 4
- Warning: we protect the graph data structure by making `G.edges[1, 2]` a
- read-only dict-like structure. However, you can assign to attributes
- in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
- data attributes: `G.edges[1, 2]['weight'] = 4`
- (For multigraphs: `MG.edges[u, v, key][name] = value`).
- **Shortcuts:**
- Many common graph features allow python syntax to speed reporting.
- >>> 1 in G # check if node in graph
- True
- >>> [n for n in G if n < 3] # iterate through nodes
- [1, 2]
- >>> len(G) # number of nodes in graph
- 5
- Often the best way to traverse all edges of a graph is via the neighbors.
- The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
- >>> for n, nbrsdict in G.adjacency():
- ... for nbr, eattr in nbrsdict.items():
- ... if "weight" in eattr:
- ... # Do something useful with the edges
- ... pass
- But the edges reporting object is often more convenient:
- >>> for u, v, weight in G.edges(data="weight"):
- ... if weight is not None:
- ... # Do something useful with the edges
- ... pass
- **Reporting:**
- Simple graph information is obtained using object-attributes and methods.
- Reporting usually provides views instead of containers to reduce memory
- usage. The views update as the graph is updated similarly to dict-views.
- The objects `nodes`, `edges` and `adj` provide access to data attributes
- via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
- (e.g. `nodes.items()`, `nodes.data('color')`,
- `nodes.data('color', default='blue')` and similarly for `edges`)
- Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
- For details on these and other miscellaneous methods, see below.
- **Subclasses (Advanced):**
- The Graph class uses a dict-of-dict-of-dict data structure.
- The outer dict (node_dict) holds adjacency information keyed by node.
- The next dict (adjlist_dict) represents the adjacency information and holds
- edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
- the edge data and holds edge attribute values keyed by attribute names.
- Each of these three dicts can be replaced in a subclass by a user defined
- dict-like object. In general, the dict-like features should be
- maintained but extra features can be added. To replace one of the
- dicts create a new graph class by changing the class(!) variable
- holding the factory for that dict-like structure. The variable names are
- node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
- adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.
- node_dict_factory : function, (default: dict)
- Factory function to be used to create the dict containing node
- attributes, keyed by node id.
- It should require no arguments and return a dict-like object
- node_attr_dict_factory: function, (default: dict)
- Factory function to be used to create the node attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object
- adjlist_outer_dict_factory : function, (default: dict)
- Factory function to be used to create the outer-most dict
- in the data structure that holds adjacency info keyed by node.
- It should require no arguments and return a dict-like object.
- adjlist_inner_dict_factory : function, optional (default: dict)
- Factory function to be used to create the adjacency list
- dict which holds edge data keyed by neighbor.
- It should require no arguments and return a dict-like object
- edge_attr_dict_factory : function, optional (default: dict)
- Factory function to be used to create the edge attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object.
- graph_attr_dict_factory : function, (default: dict)
- Factory function to be used to create the graph attribute
- dict which holds attribute values keyed by attribute name.
- It should require no arguments and return a dict-like object.
- Typically, if your extension doesn't impact the data structure all
- methods will inherited without issue except: `to_directed/to_undirected`.
- By default these methods create a DiGraph/Graph class and you probably
- want them to create your extension of a DiGraph/Graph. To facilitate
- this we define two class variables that you can set in your subclass.
- to_directed_class : callable, (default: DiGraph or MultiDiGraph)
- Class to create a new graph structure in the `to_directed` method.
- If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
- to_undirected_class : callable, (default: Graph or MultiGraph)
- Class to create a new graph structure in the `to_undirected` method.
- If `None`, a NetworkX class (Graph or MultiGraph) is used.
- **Subclassing Example**
- Create a low memory graph class that effectively disallows edge
- attributes by using a single attribute dict for all edges.
- This reduces the memory used, but you lose edge attributes.
- >>> class ThinGraph(nx.Graph):
- ... all_edge_dict = {"weight": 1}
- ...
- ... def single_edge_dict(self):
- ... return self.all_edge_dict
- ...
- ... edge_attr_dict_factory = single_edge_dict
- >>> G = ThinGraph()
- >>> G.add_edge(2, 1)
- >>> G[2][1]
- {'weight': 1}
- >>> G.add_edge(2, 2)
- >>> G[2][1] is G[2][2]
- True
- """
- _adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment]
- _succ = _adj # type: ignore[has-type]
- _pred = _CachedPropertyResetterPred()
- def __init__(self, incoming_graph_data=None, **attr):
- """Initialize a graph with edges, name, or graph attributes.
- Parameters
- ----------
- incoming_graph_data : input graph (optional, default: None)
- Data to initialize graph. If None (default) an empty
- graph is created. The data can be an edge list, or any
- NetworkX graph object. If the corresponding optional Python
- packages are installed the data can also be a 2D NumPy array, a
- SciPy sparse array, or a PyGraphviz graph.
- attr : keyword arguments, optional (default= no attributes)
- Attributes to add to graph as key=value pairs.
- See Also
- --------
- convert
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G = nx.Graph(name="my graph")
- >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
- >>> G = nx.Graph(e)
- Arbitrary graph attribute pairs (key=value) may be assigned
- >>> G = nx.Graph(e, day="Friday")
- >>> G.graph
- {'day': 'Friday'}
- """
- self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
- self._node = self.node_dict_factory() # dictionary for node attr
- # We store two adjacency lists:
- # the predecessors of node n are stored in the dict self._pred
- # the successors of node n are stored in the dict self._succ=self._adj
- self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor
- self._pred = self.adjlist_outer_dict_factory() # predecessor
- # Note: self._succ = self._adj # successor
- # attempt to load graph with data
- if incoming_graph_data is not None:
- convert.to_networkx_graph(incoming_graph_data, create_using=self)
- # load graph attributes (must be after convert)
- self.graph.update(attr)
- @cached_property
- def adj(self):
- """Graph adjacency object holding the neighbors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
- the color of the edge `(3, 2)` to `"blue"`.
- Iterating over G.adj behaves like a dict. Useful idioms include
- `for nbr, datadict in G.adj[n].items():`.
- The neighbor information is also provided by subscripting the graph.
- So `for nbr, foovalue in G[node].data('foo', default=1):` works.
- For directed graphs, `G.adj` holds outgoing (successor) info.
- """
- return AdjacencyView(self._succ)
- @cached_property
- def succ(self):
- """Graph adjacency object holding the successors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets
- the color of the edge `(3, 2)` to `"blue"`.
- Iterating over G.succ behaves like a dict. Useful idioms include
- `for nbr, datadict in G.succ[n].items():`. A data-view not provided
- by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):`
- and a default can be set via a `default` argument to the `data` method.
- The neighbor information is also provided by subscripting the graph.
- So `for nbr, foovalue in G[node].data('foo', default=1):` works.
- For directed graphs, `G.adj` is identical to `G.succ`.
- """
- return AdjacencyView(self._succ)
- @cached_property
- def pred(self):
- """Graph adjacency object holding the predecessors of each node.
- This object is a read-only dict-like structure with node keys
- and neighbor-dict values. The neighbor-dict is keyed by neighbor
- to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets
- the color of the edge `(3, 2)` to `"blue"`.
- Iterating over G.pred behaves like a dict. Useful idioms include
- `for nbr, datadict in G.pred[n].items():`. A data-view not provided
- by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):`
- A default can be set via a `default` argument to the `data` method.
- """
- return AdjacencyView(self._pred)
- def add_node(self, node_for_adding, **attr):
- """Add a single node `node_for_adding` and update node attributes.
- Parameters
- ----------
- node_for_adding : node
- A node can be any hashable Python object except None.
- attr : keyword arguments, optional
- Set or change node attributes using key=value.
- See Also
- --------
- add_nodes_from
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G.add_node(1)
- >>> G.add_node("Hello")
- >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
- >>> G.add_node(K3)
- >>> G.number_of_nodes()
- 3
- Use keywords set/change node attributes:
- >>> G.add_node(1, size=10)
- >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
- Notes
- -----
- A hashable object is one that can be used as a key in a Python
- dictionary. This includes strings, numbers, tuples of strings
- and numbers, etc.
- On many platforms hashable items also include mutables such as
- NetworkX Graphs, though one should be careful that the hash
- doesn't change on mutables.
- """
- if node_for_adding not in self._succ:
- if node_for_adding is None:
- raise ValueError("None cannot be a node")
- self._succ[node_for_adding] = self.adjlist_inner_dict_factory()
- self._pred[node_for_adding] = self.adjlist_inner_dict_factory()
- attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
- attr_dict.update(attr)
- else: # update attr even if node already exists
- self._node[node_for_adding].update(attr)
- def add_nodes_from(self, nodes_for_adding, **attr):
- """Add multiple nodes.
- Parameters
- ----------
- nodes_for_adding : iterable container
- A container of nodes (list, dict, set, etc.).
- OR
- A container of (node, attribute dict) tuples.
- Node attributes are updated using the attribute dict.
- attr : keyword arguments, optional (default= no attributes)
- Update attributes for all nodes in nodes.
- Node attributes specified in nodes as a tuple take
- precedence over attributes specified via keyword arguments.
- See Also
- --------
- add_node
- Notes
- -----
- When adding nodes from an iterator over the graph you are changing,
- a `RuntimeError` can be raised with message:
- `RuntimeError: dictionary changed size during iteration`. This
- happens when the graph's underlying dictionary is modified during
- iteration. To avoid this error, evaluate the iterator into a separate
- object, e.g. by using `list(iterator_of_nodes)`, and pass this
- object to `G.add_nodes_from`.
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G.add_nodes_from("Hello")
- >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
- >>> G.add_nodes_from(K3)
- >>> sorted(G.nodes(), key=str)
- [0, 1, 2, 'H', 'e', 'l', 'o']
- Use keywords to update specific node attributes for every node.
- >>> G.add_nodes_from([1, 2], size=10)
- >>> G.add_nodes_from([3, 4], weight=0.4)
- Use (node, attrdict) tuples to update attributes for specific nodes.
- >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
- >>> G.nodes[1]["size"]
- 11
- >>> H = nx.Graph()
- >>> H.add_nodes_from(G.nodes(data=True))
- >>> H.nodes[1]["size"]
- 11
- Evaluate an iterator over a graph if using it to modify the same graph
- >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
- >>> # wrong way - will raise RuntimeError
- >>> # G.add_nodes_from(n + 1 for n in G.nodes)
- >>> # correct way
- >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
- """
- for n in nodes_for_adding:
- try:
- newnode = n not in self._node
- newdict = attr
- except TypeError:
- n, ndict = n
- newnode = n not in self._node
- newdict = attr.copy()
- newdict.update(ndict)
- if newnode:
- if n is None:
- raise ValueError("None cannot be a node")
- self._succ[n] = self.adjlist_inner_dict_factory()
- self._pred[n] = self.adjlist_inner_dict_factory()
- self._node[n] = self.node_attr_dict_factory()
- self._node[n].update(newdict)
- def remove_node(self, n):
- """Remove node n.
- Removes the node n and all adjacent edges.
- Attempting to remove a non-existent node will raise an exception.
- Parameters
- ----------
- n : node
- A node in the graph
- Raises
- ------
- NetworkXError
- If n is not in the graph.
- See Also
- --------
- remove_nodes_from
- Examples
- --------
- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> list(G.edges)
- [(0, 1), (1, 2)]
- >>> G.remove_node(1)
- >>> list(G.edges)
- []
- """
- try:
- nbrs = self._succ[n]
- del self._node[n]
- except KeyError as err: # NetworkXError if n not in self
- raise NetworkXError(f"The node {n} is not in the digraph.") from err
- for u in nbrs:
- del self._pred[u][n] # remove all edges n-u in digraph
- del self._succ[n] # remove node from succ
- for u in self._pred[n]:
- del self._succ[u][n] # remove all edges n-u in digraph
- del self._pred[n] # remove node from pred
- def remove_nodes_from(self, nodes):
- """Remove multiple nodes.
- Parameters
- ----------
- nodes : iterable container
- A container of nodes (list, dict, set, etc.). If a node
- in the container is not in the graph it is silently ignored.
- See Also
- --------
- remove_node
- Notes
- -----
- When removing nodes from an iterator over the graph you are changing,
- a `RuntimeError` will be raised with message:
- `RuntimeError: dictionary changed size during iteration`. This
- happens when the graph's underlying dictionary is modified during
- iteration. To avoid this error, evaluate the iterator into a separate
- object, e.g. by using `list(iterator_of_nodes)`, and pass this
- object to `G.remove_nodes_from`.
- Examples
- --------
- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> e = list(G.nodes)
- >>> e
- [0, 1, 2]
- >>> G.remove_nodes_from(e)
- >>> list(G.nodes)
- []
- Evaluate an iterator over a graph if using it to modify the same graph
- >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
- >>> # this command will fail, as the graph's dict is modified during iteration
- >>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
- >>> # this command will work, since the dictionary underlying graph is not modified
- >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
- """
- for n in nodes:
- try:
- succs = self._succ[n]
- del self._node[n]
- for u in succs:
- del self._pred[u][n] # remove all edges n-u in digraph
- del self._succ[n] # now remove node
- for u in self._pred[n]:
- del self._succ[u][n] # remove all edges n-u in digraph
- del self._pred[n] # now remove node
- except KeyError:
- pass # silent failure on remove
- def add_edge(self, u_of_edge, v_of_edge, **attr):
- """Add an edge between u and v.
- The nodes u and v will be automatically added if they are
- not already in the graph.
- Edge attributes can be specified with keywords or by directly
- accessing the edge's attribute dictionary. See examples below.
- Parameters
- ----------
- u_of_edge, v_of_edge : nodes
- Nodes can be, for example, strings or numbers.
- Nodes must be hashable (and not None) Python objects.
- attr : keyword arguments, optional
- Edge data (or labels or objects) can be assigned using
- keyword arguments.
- See Also
- --------
- add_edges_from : add a collection of edges
- Notes
- -----
- Adding an edge that already exists updates the edge data.
- Many NetworkX algorithms designed for weighted graphs use
- an edge attribute (by default `weight`) to hold a numerical value.
- Examples
- --------
- The following all add the edge e=(1, 2) to graph G:
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> e = (1, 2)
- >>> G.add_edge(1, 2) # explicit two-node form
- >>> G.add_edge(*e) # single edge as tuple of two nodes
- >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
- Associate data to edges using keywords:
- >>> G.add_edge(1, 2, weight=3)
- >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
- For non-string attribute keys, use subscript notation.
- >>> G.add_edge(1, 2)
- >>> G[1][2].update({0: 5})
- >>> G.edges[1, 2].update({0: 5})
- """
- u, v = u_of_edge, v_of_edge
- # add nodes
- if u not in self._succ:
- if u is None:
- raise ValueError("None cannot be a node")
- self._succ[u] = self.adjlist_inner_dict_factory()
- self._pred[u] = self.adjlist_inner_dict_factory()
- self._node[u] = self.node_attr_dict_factory()
- if v not in self._succ:
- if v is None:
- raise ValueError("None cannot be a node")
- self._succ[v] = self.adjlist_inner_dict_factory()
- self._pred[v] = self.adjlist_inner_dict_factory()
- self._node[v] = self.node_attr_dict_factory()
- # add the edge
- datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
- datadict.update(attr)
- self._succ[u][v] = datadict
- self._pred[v][u] = datadict
- def add_edges_from(self, ebunch_to_add, **attr):
- """Add all the edges in ebunch_to_add.
- Parameters
- ----------
- ebunch_to_add : container of edges
- Each edge given in the container will be added to the
- graph. The edges must be given as 2-tuples (u, v) or
- 3-tuples (u, v, d) where d is a dictionary containing edge data.
- attr : keyword arguments, optional
- Edge data (or labels or objects) can be assigned using
- keyword arguments.
- See Also
- --------
- add_edge : add a single edge
- add_weighted_edges_from : convenient way to add weighted edges
- Notes
- -----
- Adding the same edge twice has no effect but any edge data
- will be updated when each duplicate edge is added.
- Edge attributes specified in an ebunch take precedence over
- attributes specified via keyword arguments.
- When adding edges from an iterator over the graph you are changing,
- a `RuntimeError` can be raised with message:
- `RuntimeError: dictionary changed size during iteration`. This
- happens when the graph's underlying dictionary is modified during
- iteration. To avoid this error, evaluate the iterator into a separate
- object, e.g. by using `list(iterator_of_edges)`, and pass this
- object to `G.add_edges_from`.
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
- >>> e = zip(range(0, 3), range(1, 4))
- >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
- Associate data to edges
- >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
- >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
- Evaluate an iterator over a graph if using it to modify the same graph
- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
- >>> # Grow graph by one new node, adding edges to all existing nodes.
- >>> # wrong way - will raise RuntimeError
- >>> # G.add_edges_from(((5, n) for n in G.nodes))
- >>> # right way - note that there will be no self-edge for node 5
- >>> G.add_edges_from(list((5, n) for n in G.nodes))
- """
- for e in ebunch_to_add:
- ne = len(e)
- if ne == 3:
- u, v, dd = e
- elif ne == 2:
- u, v = e
- dd = {}
- else:
- raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
- if u not in self._succ:
- if u is None:
- raise ValueError("None cannot be a node")
- self._succ[u] = self.adjlist_inner_dict_factory()
- self._pred[u] = self.adjlist_inner_dict_factory()
- self._node[u] = self.node_attr_dict_factory()
- if v not in self._succ:
- if v is None:
- raise ValueError("None cannot be a node")
- self._succ[v] = self.adjlist_inner_dict_factory()
- self._pred[v] = self.adjlist_inner_dict_factory()
- self._node[v] = self.node_attr_dict_factory()
- datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
- datadict.update(attr)
- datadict.update(dd)
- self._succ[u][v] = datadict
- self._pred[v][u] = datadict
- def remove_edge(self, u, v):
- """Remove the edge between u and v.
- Parameters
- ----------
- u, v : nodes
- Remove the edge between nodes u and v.
- Raises
- ------
- NetworkXError
- If there is not an edge between u and v.
- See Also
- --------
- remove_edges_from : remove a collection of edges
- Examples
- --------
- >>> G = nx.Graph() # or DiGraph, etc
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.remove_edge(0, 1)
- >>> e = (1, 2)
- >>> G.remove_edge(*e) # unpacks e from an edge tuple
- >>> e = (2, 3, {"weight": 7}) # an edge with attribute data
- >>> G.remove_edge(*e[:2]) # select first part of edge tuple
- """
- try:
- del self._succ[u][v]
- del self._pred[v][u]
- except KeyError as err:
- raise NetworkXError(f"The edge {u}-{v} not in graph.") from err
- def remove_edges_from(self, ebunch):
- """Remove all edges specified in ebunch.
- Parameters
- ----------
- ebunch: list or container of edge tuples
- Each edge given in the list or container will be removed
- from the graph. The edges can be:
- - 2-tuples (u, v) edge between u and v.
- - 3-tuples (u, v, k) where k is ignored.
- See Also
- --------
- remove_edge : remove a single edge
- Notes
- -----
- Will fail silently if an edge in ebunch is not in the graph.
- Examples
- --------
- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> ebunch = [(1, 2), (2, 3)]
- >>> G.remove_edges_from(ebunch)
- """
- for e in ebunch:
- u, v = e[:2] # ignore edge data
- if u in self._succ and v in self._succ[u]:
- del self._succ[u][v]
- del self._pred[v][u]
- def has_successor(self, u, v):
- """Returns True if node u has successor v.
- This is true if graph has the edge u->v.
- """
- return u in self._succ and v in self._succ[u]
- def has_predecessor(self, u, v):
- """Returns True if node u has predecessor v.
- This is true if graph has the edge u<-v.
- """
- return u in self._pred and v in self._pred[u]
- def successors(self, n):
- """Returns an iterator over successor nodes of n.
- A successor of n is a node m such that there exists a directed
- edge from n to m.
- Parameters
- ----------
- n : node
- A node in the graph
- Raises
- ------
- NetworkXError
- If n is not in the graph.
- See Also
- --------
- predecessors
- Notes
- -----
- neighbors() and successors() are the same.
- """
- try:
- return iter(self._succ[n])
- except KeyError as err:
- raise NetworkXError(f"The node {n} is not in the digraph.") from err
- # digraph definitions
- neighbors = successors
- def predecessors(self, n):
- """Returns an iterator over predecessor nodes of n.
- A predecessor of n is a node m such that there exists a directed
- edge from m to n.
- Parameters
- ----------
- n : node
- A node in the graph
- Raises
- ------
- NetworkXError
- If n is not in the graph.
- See Also
- --------
- successors
- """
- try:
- return iter(self._pred[n])
- except KeyError as err:
- raise NetworkXError(f"The node {n} is not in the digraph.") from err
- @cached_property
- def edges(self):
- """An OutEdgeView of the DiGraph as G.edges or G.edges().
- edges(self, nbunch=None, data=False, default=None)
- The OutEdgeView provides set-like operations on the edge-tuples
- as well as edge attribute lookup. When called, it also provides
- an EdgeDataView object which allows control of access to edge
- attributes (but does not provide set-like operations).
- Hence, `G.edges[u, v]['color']` provides the value of the color
- attribute for edge `(u, v)` while
- `for (u, v, c) in G.edges.data('color', default='red'):`
- iterates through all the edges yielding the color attribute
- with default `'red'` if no color attribute exists.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges from these nodes.
- data : string or bool, optional (default=False)
- The edge attribute returned in 3-tuple (u, v, ddict[data]).
- If True, return edge attribute dict in 3-tuple (u, v, ddict).
- If False, return 2-tuple (u, v).
- default : value, optional (default=None)
- Value used for edges that don't have the requested attribute.
- Only relevant if data is not True or False.
- Returns
- -------
- edges : OutEdgeView
- A view of edge attributes, usually it iterates over (u, v)
- or (u, v, d) tuples of edges, but can also be used for
- attribute lookup as `edges[u, v]['foo']`.
- See Also
- --------
- in_edges, out_edges
- Notes
- -----
- Nodes in nbunch that are not in the graph will be (quietly) ignored.
- For directed graphs this returns the out-edges.
- Examples
- --------
- >>> G = nx.DiGraph() # or MultiDiGraph, etc
- >>> nx.add_path(G, [0, 1, 2])
- >>> G.add_edge(2, 3, weight=5)
- >>> [e for e in G.edges]
- [(0, 1), (1, 2), (2, 3)]
- >>> G.edges.data() # default data is {} (empty dict)
- OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
- >>> G.edges.data("weight", default=1)
- OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
- >>> G.edges([0, 2]) # only edges originating from these nodes
- OutEdgeDataView([(0, 1), (2, 3)])
- >>> G.edges(0) # only edges from node 0
- OutEdgeDataView([(0, 1)])
- """
- return OutEdgeView(self)
- # alias out_edges to edges
- @cached_property
- def out_edges(self):
- return OutEdgeView(self)
- out_edges.__doc__ = edges.__doc__
- @cached_property
- def in_edges(self):
- """A view of the in edges of the graph as G.in_edges or G.in_edges().
- in_edges(self, nbunch=None, data=False, default=None):
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- data : string or bool, optional (default=False)
- The edge attribute returned in 3-tuple (u, v, ddict[data]).
- If True, return edge attribute dict in 3-tuple (u, v, ddict).
- If False, return 2-tuple (u, v).
- default : value, optional (default=None)
- Value used for edges that don't have the requested attribute.
- Only relevant if data is not True or False.
- Returns
- -------
- in_edges : InEdgeView or InEdgeDataView
- A view of edge attributes, usually it iterates over (u, v)
- or (u, v, d) tuples of edges, but can also be used for
- attribute lookup as `edges[u, v]['foo']`.
- Examples
- --------
- >>> G = nx.DiGraph()
- >>> G.add_edge(1, 2, color='blue')
- >>> G.in_edges()
- InEdgeView([(1, 2)])
- >>> G.in_edges(nbunch=2)
- InEdgeDataView([(1, 2)])
- See Also
- --------
- edges
- """
- return InEdgeView(self)
- @cached_property
- def degree(self):
- """A DegreeView for the Graph as G.degree or G.degree().
- The node degree is the number of edges adjacent to the node.
- The weighted node degree is the sum of the edge weights for
- edges incident to that node.
- This object provides an iterator for (node, degree) as well as
- lookup for the degree for a single node.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The name of an edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights adjacent to the node.
- Returns
- -------
- DiDegreeView or int
- If multiple nodes are requested (the default), returns a `DiDegreeView`
- mapping nodes to their degree.
- If a single node is requested, returns the degree of the node as an integer.
- See Also
- --------
- in_degree, out_degree
- Examples
- --------
- >>> G = nx.DiGraph() # or MultiDiGraph
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.degree(0) # node 0 with degree 1
- 1
- >>> list(G.degree([0, 1, 2]))
- [(0, 1), (1, 2), (2, 2)]
- """
- return DiDegreeView(self)
- @cached_property
- def in_degree(self):
- """An InDegreeView for (node, in_degree) or in_degree for single node.
- The node in_degree is the number of edges pointing to the node.
- The weighted node degree is the sum of the edge weights for
- edges incident to that node.
- This object provides an iteration over (node, in_degree) as well as
- lookup for the degree for a single node.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The name of an edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights adjacent to the node.
- Returns
- -------
- If a single node is requested
- deg : int
- In-degree of the node
- OR if multiple nodes are requested
- nd_iter : iterator
- The iterator returns two-tuples of (node, in-degree).
- See Also
- --------
- degree, out_degree
- Examples
- --------
- >>> G = nx.DiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.in_degree(0) # node 0 with degree 0
- 0
- >>> list(G.in_degree([0, 1, 2]))
- [(0, 0), (1, 1), (2, 1)]
- """
- return InDegreeView(self)
- @cached_property
- def out_degree(self):
- """An OutDegreeView for (node, out_degree)
- The node out_degree is the number of edges pointing out of the node.
- The weighted node degree is the sum of the edge weights for
- edges incident to that node.
- This object provides an iterator over (node, out_degree) as well as
- lookup for the degree for a single node.
- Parameters
- ----------
- nbunch : single node, container, or all nodes (default= all nodes)
- The view will only report edges incident to these nodes.
- weight : string or None, optional (default=None)
- The name of an edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1.
- The degree is the sum of the edge weights adjacent to the node.
- Returns
- -------
- If a single node is requested
- deg : int
- Out-degree of the node
- OR if multiple nodes are requested
- nd_iter : iterator
- The iterator returns two-tuples of (node, out-degree).
- See Also
- --------
- degree, in_degree
- Examples
- --------
- >>> G = nx.DiGraph()
- >>> nx.add_path(G, [0, 1, 2, 3])
- >>> G.out_degree(0) # node 0 with degree 1
- 1
- >>> list(G.out_degree([0, 1, 2]))
- [(0, 1), (1, 1), (2, 1)]
- """
- return OutDegreeView(self)
- def clear(self):
- """Remove all nodes and edges from the graph.
- This also removes the name, and all graph, node, and edge attributes.
- Examples
- --------
- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G.clear()
- >>> list(G.nodes)
- []
- >>> list(G.edges)
- []
- """
- self._succ.clear()
- self._pred.clear()
- self._node.clear()
- self.graph.clear()
- def clear_edges(self):
- """Remove all edges from the graph without altering nodes.
- Examples
- --------
- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
- >>> G.clear_edges()
- >>> list(G.nodes)
- [0, 1, 2, 3]
- >>> list(G.edges)
- []
- """
- for predecessor_dict in self._pred.values():
- predecessor_dict.clear()
- for successor_dict in self._succ.values():
- successor_dict.clear()
- def is_multigraph(self):
- """Returns True if graph is a multigraph, False otherwise."""
- return False
- def is_directed(self):
- """Returns True if graph is directed, False otherwise."""
- return True
- def to_undirected(self, reciprocal=False, as_view=False):
- """Returns an undirected representation of the digraph.
- Parameters
- ----------
- reciprocal : bool (optional)
- If True only keep edges that appear in both directions
- in the original digraph.
- as_view : bool (optional, default=False)
- If True return an undirected view of the original directed graph.
- Returns
- -------
- G : Graph
- An undirected graph with the same name and nodes and
- with edge (u, v, data) if either (u, v, data) or (v, u, data)
- is in the digraph. If both edges exist in digraph and
- their edge data is different, only one edge is created
- with an arbitrary choice of which edge data to use.
- You must check and correct for this manually if desired.
- See Also
- --------
- Graph, copy, add_edge, add_edges_from
- Notes
- -----
- If edges in both directions (u, v) and (v, u) exist in the
- graph, attributes for the new undirected edge will be a combination of
- the attributes of the directed edges. The edge data is updated
- in the (arbitrary) order that the edges are encountered. For
- more customized control of the edge attributes use add_edge().
- This returns a "deepcopy" of the edge, node, and
- graph attributes which attempts to completely copy
- all of the data and references.
- This is in contrast to the similar G=DiGraph(D) which returns a
- shallow copy of the data.
- See the Python copy module for more information on shallow
- and deep copies, https://docs.python.org/3/library/copy.html.
- Warning: If you have subclassed DiGraph to use dict-like objects
- in the data structure, those changes do not transfer to the
- Graph created by this method.
- Examples
- --------
- >>> G = nx.path_graph(2) # or MultiGraph, etc
- >>> H = G.to_directed()
- >>> list(H.edges)
- [(0, 1), (1, 0)]
- >>> G2 = H.to_undirected()
- >>> list(G2.edges)
- [(0, 1)]
- """
- graph_class = self.to_undirected_class()
- if as_view is True:
- return nx.graphviews.generic_graph_view(self, graph_class)
- # deepcopy when not a view
- G = graph_class()
- G.graph.update(deepcopy(self.graph))
- G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
- if reciprocal is True:
- G.add_edges_from(
- (u, v, deepcopy(d))
- for u, nbrs in self._adj.items()
- for v, d in nbrs.items()
- if v in self._pred[u]
- )
- else:
- G.add_edges_from(
- (u, v, deepcopy(d))
- for u, nbrs in self._adj.items()
- for v, d in nbrs.items()
- )
- return G
- def reverse(self, copy=True):
- """Returns the reverse of the graph.
- The reverse is a graph with the same nodes and edges
- but with the directions of the edges reversed.
- Parameters
- ----------
- copy : bool optional (default=True)
- If True, return a new DiGraph holding the reversed edges.
- If False, the reverse graph is created using a view of
- the original graph.
- """
- if copy:
- H = self.__class__()
- H.graph.update(deepcopy(self.graph))
- H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items())
- H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True))
- return H
- return nx.graphviews.reverse_view(self)
|