123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- """Unit tests for the :mod:`networkx.algorithms.boundary` module."""
- from itertools import combinations
- import pytest
- import networkx as nx
- from networkx import convert_node_labels_to_integers as cnlti
- from networkx.utils import edges_equal
- class TestNodeBoundary:
- """Unit tests for the :func:`~networkx.node_boundary` function."""
- def test_null_graph(self):
- """Tests that the null graph has empty node boundaries."""
- null = nx.null_graph()
- assert nx.node_boundary(null, []) == set()
- assert nx.node_boundary(null, [], []) == set()
- assert nx.node_boundary(null, [1, 2, 3]) == set()
- assert nx.node_boundary(null, [1, 2, 3], [4, 5, 6]) == set()
- assert nx.node_boundary(null, [1, 2, 3], [3, 4, 5]) == set()
- def test_path_graph(self):
- P10 = cnlti(nx.path_graph(10), first_label=1)
- assert nx.node_boundary(P10, []) == set()
- assert nx.node_boundary(P10, [], []) == set()
- assert nx.node_boundary(P10, [1, 2, 3]) == {4}
- assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7}
- assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8}
- assert nx.node_boundary(P10, [8, 9, 10]) == {7}
- assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set()
- def test_complete_graph(self):
- K10 = cnlti(nx.complete_graph(10), first_label=1)
- assert nx.node_boundary(K10, []) == set()
- assert nx.node_boundary(K10, [], []) == set()
- assert nx.node_boundary(K10, [1, 2, 3]) == {4, 5, 6, 7, 8, 9, 10}
- assert nx.node_boundary(K10, [4, 5, 6]) == {1, 2, 3, 7, 8, 9, 10}
- assert nx.node_boundary(K10, [3, 4, 5, 6, 7]) == {1, 2, 8, 9, 10}
- assert nx.node_boundary(K10, [4, 5, 6], []) == set()
- assert nx.node_boundary(K10, K10) == set()
- assert nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]) == {4, 5}
- def test_petersen(self):
- """Check boundaries in the petersen graph
- cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2)
- """
- def cheeger(G, k):
- return min(len(nx.node_boundary(G, nn)) / k for nn in combinations(G, k))
- P = nx.petersen_graph()
- assert cheeger(P, 1) == pytest.approx(3.00, abs=1e-2)
- assert cheeger(P, 2) == pytest.approx(2.00, abs=1e-2)
- assert cheeger(P, 3) == pytest.approx(1.67, abs=1e-2)
- assert cheeger(P, 4) == pytest.approx(1.00, abs=1e-2)
- assert cheeger(P, 5) == pytest.approx(0.80, abs=1e-2)
- def test_directed(self):
- """Tests the node boundary of a directed graph."""
- G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
- S = {0, 1}
- boundary = nx.node_boundary(G, S)
- expected = {2}
- assert boundary == expected
- def test_multigraph(self):
- """Tests the node boundary of a multigraph."""
- G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
- S = {0, 1}
- boundary = nx.node_boundary(G, S)
- expected = {2, 4}
- assert boundary == expected
- def test_multidigraph(self):
- """Tests the edge boundary of a multdiigraph."""
- edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
- G = nx.MultiDiGraph(edges * 2)
- S = {0, 1}
- boundary = nx.node_boundary(G, S)
- expected = {2}
- assert boundary == expected
- class TestEdgeBoundary:
- """Unit tests for the :func:`~networkx.edge_boundary` function."""
- def test_null_graph(self):
- null = nx.null_graph()
- assert list(nx.edge_boundary(null, [])) == []
- assert list(nx.edge_boundary(null, [], [])) == []
- assert list(nx.edge_boundary(null, [1, 2, 3])) == []
- assert list(nx.edge_boundary(null, [1, 2, 3], [4, 5, 6])) == []
- assert list(nx.edge_boundary(null, [1, 2, 3], [3, 4, 5])) == []
- def test_path_graph(self):
- P10 = cnlti(nx.path_graph(10), first_label=1)
- assert list(nx.edge_boundary(P10, [])) == []
- assert list(nx.edge_boundary(P10, [], [])) == []
- assert list(nx.edge_boundary(P10, [1, 2, 3])) == [(3, 4)]
- assert sorted(nx.edge_boundary(P10, [4, 5, 6])) == [(4, 3), (6, 7)]
- assert sorted(nx.edge_boundary(P10, [3, 4, 5, 6, 7])) == [(3, 2), (7, 8)]
- assert list(nx.edge_boundary(P10, [8, 9, 10])) == [(8, 7)]
- assert sorted(nx.edge_boundary(P10, [4, 5, 6], [9, 10])) == []
- assert list(nx.edge_boundary(P10, [1, 2, 3], [3, 4, 5])) == [(2, 3), (3, 4)]
- def test_complete_graph(self):
- K10 = cnlti(nx.complete_graph(10), first_label=1)
- def ilen(iterable):
- return sum(1 for i in iterable)
- assert list(nx.edge_boundary(K10, [])) == []
- assert list(nx.edge_boundary(K10, [], [])) == []
- assert ilen(nx.edge_boundary(K10, [1, 2, 3])) == 21
- assert ilen(nx.edge_boundary(K10, [4, 5, 6, 7])) == 24
- assert ilen(nx.edge_boundary(K10, [3, 4, 5, 6, 7])) == 25
- assert ilen(nx.edge_boundary(K10, [8, 9, 10])) == 21
- assert edges_equal(
- nx.edge_boundary(K10, [4, 5, 6], [9, 10]),
- [(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)],
- )
- assert edges_equal(
- nx.edge_boundary(K10, [1, 2, 3], [3, 4, 5]),
- [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)],
- )
- def test_directed(self):
- """Tests the edge boundary of a directed graph."""
- G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
- S = {0, 1}
- boundary = list(nx.edge_boundary(G, S))
- expected = [(1, 2)]
- assert boundary == expected
- def test_multigraph(self):
- """Tests the edge boundary of a multigraph."""
- G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
- S = {0, 1}
- boundary = list(nx.edge_boundary(G, S))
- expected = [(0, 4), (0, 4), (1, 2), (1, 2)]
- assert boundary == expected
- def test_multidigraph(self):
- """Tests the edge boundary of a multdiigraph."""
- edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
- G = nx.MultiDiGraph(edges * 2)
- S = {0, 1}
- boundary = list(nx.edge_boundary(G, S))
- expected = [(1, 2), (1, 2)]
- assert boundary == expected
|