123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407 |
- import pytest
- import networkx as nx
- from networkx.algorithms import bipartite
- from networkx.utils import edges_equal, nodes_equal
- class TestBipartiteProject:
- def test_path_projected_graph(self):
- G = nx.path_graph(4)
- P = bipartite.projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- P = bipartite.projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- G = nx.MultiGraph([(0, 1)])
- with pytest.raises(nx.NetworkXError, match="not defined for multigraphs"):
- bipartite.projected_graph(G, [0])
- def test_path_projected_properties_graph(self):
- G = nx.path_graph(4)
- G.add_node(1, name="one")
- G.add_node(2, name="two")
- P = bipartite.projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- assert P.nodes[1]["name"] == G.nodes[1]["name"]
- P = bipartite.projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- assert P.nodes[2]["name"] == G.nodes[2]["name"]
- def test_path_collaboration_projected_graph(self):
- G = nx.path_graph(4)
- P = bipartite.collaboration_weighted_projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- P[1][3]["weight"] = 1
- P = bipartite.collaboration_weighted_projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- P[0][2]["weight"] = 1
- def test_directed_path_collaboration_projected_graph(self):
- G = nx.DiGraph()
- nx.add_path(G, range(4))
- P = bipartite.collaboration_weighted_projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- P[1][3]["weight"] = 1
- P = bipartite.collaboration_weighted_projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- P[0][2]["weight"] = 1
- def test_path_weighted_projected_graph(self):
- G = nx.path_graph(4)
- with pytest.raises(nx.NetworkXAlgorithmError):
- bipartite.weighted_projected_graph(G, [1, 2, 3, 3])
- P = bipartite.weighted_projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- P[1][3]["weight"] = 1
- P = bipartite.weighted_projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- P[0][2]["weight"] = 1
- def test_digraph_weighted_projection(self):
- G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)])
- P = bipartite.overlap_weighted_projected_graph(G, [1, 3])
- assert nx.get_edge_attributes(P, "weight") == {(1, 3): 1.0}
- assert len(P) == 2
- def test_path_weighted_projected_directed_graph(self):
- G = nx.DiGraph()
- nx.add_path(G, range(4))
- P = bipartite.weighted_projected_graph(G, [1, 3])
- assert nodes_equal(list(P), [1, 3])
- assert edges_equal(list(P.edges()), [(1, 3)])
- P[1][3]["weight"] = 1
- P = bipartite.weighted_projected_graph(G, [0, 2])
- assert nodes_equal(list(P), [0, 2])
- assert edges_equal(list(P.edges()), [(0, 2)])
- P[0][2]["weight"] = 1
- def test_star_projected_graph(self):
- G = nx.star_graph(3)
- P = bipartite.projected_graph(G, [1, 2, 3])
- assert nodes_equal(list(P), [1, 2, 3])
- assert edges_equal(list(P.edges()), [(1, 2), (1, 3), (2, 3)])
- P = bipartite.weighted_projected_graph(G, [1, 2, 3])
- assert nodes_equal(list(P), [1, 2, 3])
- assert edges_equal(list(P.edges()), [(1, 2), (1, 3), (2, 3)])
- P = bipartite.projected_graph(G, [0])
- assert nodes_equal(list(P), [0])
- assert edges_equal(list(P.edges()), [])
- def test_project_multigraph(self):
- G = nx.Graph()
- G.add_edge("a", 1)
- G.add_edge("b", 1)
- G.add_edge("a", 2)
- G.add_edge("b", 2)
- P = bipartite.projected_graph(G, "ab")
- assert edges_equal(list(P.edges()), [("a", "b")])
- P = bipartite.weighted_projected_graph(G, "ab")
- assert edges_equal(list(P.edges()), [("a", "b")])
- P = bipartite.projected_graph(G, "ab", multigraph=True)
- assert edges_equal(list(P.edges()), [("a", "b"), ("a", "b")])
- def test_project_collaboration(self):
- G = nx.Graph()
- G.add_edge("a", 1)
- G.add_edge("b", 1)
- G.add_edge("b", 2)
- G.add_edge("c", 2)
- G.add_edge("c", 3)
- G.add_edge("c", 4)
- G.add_edge("b", 4)
- P = bipartite.collaboration_weighted_projected_graph(G, "abc")
- assert P["a"]["b"]["weight"] == 1
- assert P["b"]["c"]["weight"] == 2
- def test_directed_projection(self):
- G = nx.DiGraph()
- G.add_edge("A", 1)
- G.add_edge(1, "B")
- G.add_edge("A", 2)
- G.add_edge("B", 2)
- P = bipartite.projected_graph(G, "AB")
- assert edges_equal(list(P.edges()), [("A", "B")])
- P = bipartite.weighted_projected_graph(G, "AB")
- assert edges_equal(list(P.edges()), [("A", "B")])
- assert P["A"]["B"]["weight"] == 1
- P = bipartite.projected_graph(G, "AB", multigraph=True)
- assert edges_equal(list(P.edges()), [("A", "B")])
- G = nx.DiGraph()
- G.add_edge("A", 1)
- G.add_edge(1, "B")
- G.add_edge("A", 2)
- G.add_edge(2, "B")
- P = bipartite.projected_graph(G, "AB")
- assert edges_equal(list(P.edges()), [("A", "B")])
- P = bipartite.weighted_projected_graph(G, "AB")
- assert edges_equal(list(P.edges()), [("A", "B")])
- assert P["A"]["B"]["weight"] == 2
- P = bipartite.projected_graph(G, "AB", multigraph=True)
- assert edges_equal(list(P.edges()), [("A", "B"), ("A", "B")])
- class TestBipartiteWeightedProjection:
- @classmethod
- def setup_class(cls):
- # Tore Opsahl's example
- # http://toreopsahl.com/2009/05/01/projecting-two-mode-networks-onto-weighted-one-mode-networks/
- cls.G = nx.Graph()
- cls.G.add_edge("A", 1)
- cls.G.add_edge("A", 2)
- cls.G.add_edge("B", 1)
- cls.G.add_edge("B", 2)
- cls.G.add_edge("B", 3)
- cls.G.add_edge("B", 4)
- cls.G.add_edge("B", 5)
- cls.G.add_edge("C", 1)
- cls.G.add_edge("D", 3)
- cls.G.add_edge("E", 4)
- cls.G.add_edge("E", 5)
- cls.G.add_edge("E", 6)
- cls.G.add_edge("F", 6)
- # Graph based on figure 6 from Newman (2001)
- cls.N = nx.Graph()
- cls.N.add_edge("A", 1)
- cls.N.add_edge("A", 2)
- cls.N.add_edge("A", 3)
- cls.N.add_edge("B", 1)
- cls.N.add_edge("B", 2)
- cls.N.add_edge("B", 3)
- cls.N.add_edge("C", 1)
- cls.N.add_edge("D", 1)
- cls.N.add_edge("E", 3)
- def test_project_weighted_shared(self):
- edges = [
- ("A", "B", 2),
- ("A", "C", 1),
- ("B", "C", 1),
- ("B", "D", 1),
- ("B", "E", 2),
- ("E", "F", 1),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.weighted_projected_graph(self.G, "ABCDEF")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- edges = [
- ("A", "B", 3),
- ("A", "E", 1),
- ("A", "C", 1),
- ("A", "D", 1),
- ("B", "E", 1),
- ("B", "C", 1),
- ("B", "D", 1),
- ("C", "D", 1),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.weighted_projected_graph(self.N, "ABCDE")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- def test_project_weighted_newman(self):
- edges = [
- ("A", "B", 1.5),
- ("A", "C", 0.5),
- ("B", "C", 0.5),
- ("B", "D", 1),
- ("B", "E", 2),
- ("E", "F", 1),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.collaboration_weighted_projected_graph(self.G, "ABCDEF")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- edges = [
- ("A", "B", 11 / 6.0),
- ("A", "E", 1 / 2.0),
- ("A", "C", 1 / 3.0),
- ("A", "D", 1 / 3.0),
- ("B", "E", 1 / 2.0),
- ("B", "C", 1 / 3.0),
- ("B", "D", 1 / 3.0),
- ("C", "D", 1 / 3.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.collaboration_weighted_projected_graph(self.N, "ABCDE")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- def test_project_weighted_ratio(self):
- edges = [
- ("A", "B", 2 / 6.0),
- ("A", "C", 1 / 6.0),
- ("B", "C", 1 / 6.0),
- ("B", "D", 1 / 6.0),
- ("B", "E", 2 / 6.0),
- ("E", "F", 1 / 6.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.weighted_projected_graph(self.G, "ABCDEF", ratio=True)
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- edges = [
- ("A", "B", 3 / 3.0),
- ("A", "E", 1 / 3.0),
- ("A", "C", 1 / 3.0),
- ("A", "D", 1 / 3.0),
- ("B", "E", 1 / 3.0),
- ("B", "C", 1 / 3.0),
- ("B", "D", 1 / 3.0),
- ("C", "D", 1 / 3.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.weighted_projected_graph(self.N, "ABCDE", ratio=True)
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- def test_project_weighted_overlap(self):
- edges = [
- ("A", "B", 2 / 2.0),
- ("A", "C", 1 / 1.0),
- ("B", "C", 1 / 1.0),
- ("B", "D", 1 / 1.0),
- ("B", "E", 2 / 3.0),
- ("E", "F", 1 / 1.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.overlap_weighted_projected_graph(self.G, "ABCDEF", jaccard=False)
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- edges = [
- ("A", "B", 3 / 3.0),
- ("A", "E", 1 / 1.0),
- ("A", "C", 1 / 1.0),
- ("A", "D", 1 / 1.0),
- ("B", "E", 1 / 1.0),
- ("B", "C", 1 / 1.0),
- ("B", "D", 1 / 1.0),
- ("C", "D", 1 / 1.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.overlap_weighted_projected_graph(self.N, "ABCDE", jaccard=False)
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- def test_project_weighted_jaccard(self):
- edges = [
- ("A", "B", 2 / 5.0),
- ("A", "C", 1 / 2.0),
- ("B", "C", 1 / 5.0),
- ("B", "D", 1 / 5.0),
- ("B", "E", 2 / 6.0),
- ("E", "F", 1 / 3.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.overlap_weighted_projected_graph(self.G, "ABCDEF")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in list(P.edges()):
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- edges = [
- ("A", "B", 3 / 3.0),
- ("A", "E", 1 / 3.0),
- ("A", "C", 1 / 3.0),
- ("A", "D", 1 / 3.0),
- ("B", "E", 1 / 3.0),
- ("B", "C", 1 / 3.0),
- ("B", "D", 1 / 3.0),
- ("C", "D", 1 / 1.0),
- ]
- Panswer = nx.Graph()
- Panswer.add_weighted_edges_from(edges)
- P = bipartite.overlap_weighted_projected_graph(self.N, "ABCDE")
- assert edges_equal(list(P.edges()), Panswer.edges())
- for u, v in P.edges():
- assert P[u][v]["weight"] == Panswer[u][v]["weight"]
- def test_generic_weighted_projected_graph_simple(self):
- def shared(G, u, v):
- return len(set(G[u]) & set(G[v]))
- B = nx.path_graph(5)
- G = bipartite.generic_weighted_projected_graph(
- B, [0, 2, 4], weight_function=shared
- )
- assert nodes_equal(list(G), [0, 2, 4])
- assert edges_equal(
- list(G.edges(data=True)),
- [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})],
- )
- G = bipartite.generic_weighted_projected_graph(B, [0, 2, 4])
- assert nodes_equal(list(G), [0, 2, 4])
- assert edges_equal(
- list(G.edges(data=True)),
- [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})],
- )
- B = nx.DiGraph()
- nx.add_path(B, range(5))
- G = bipartite.generic_weighted_projected_graph(B, [0, 2, 4])
- assert nodes_equal(list(G), [0, 2, 4])
- assert edges_equal(
- list(G.edges(data=True)), [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})]
- )
- def test_generic_weighted_projected_graph_custom(self):
- def jaccard(G, u, v):
- unbrs = set(G[u])
- vnbrs = set(G[v])
- return len(unbrs & vnbrs) / len(unbrs | vnbrs)
- def my_weight(G, u, v, weight="weight"):
- w = 0
- for nbr in set(G[u]) & set(G[v]):
- w += G.edges[u, nbr].get(weight, 1) + G.edges[v, nbr].get(weight, 1)
- return w
- B = nx.bipartite.complete_bipartite_graph(2, 2)
- for i, (u, v) in enumerate(B.edges()):
- B.edges[u, v]["weight"] = i + 1
- G = bipartite.generic_weighted_projected_graph(
- B, [0, 1], weight_function=jaccard
- )
- assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 1.0})])
- G = bipartite.generic_weighted_projected_graph(
- B, [0, 1], weight_function=my_weight
- )
- assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 10})])
- G = bipartite.generic_weighted_projected_graph(B, [0, 1])
- assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 2})])
|