123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
- from mpmath import mp
- from mpmath import libmp
- xrange = libmp.backend.xrange
- def run_eigsy(A, verbose = False):
- if verbose:
- print("original matrix:\n", str(A))
- D, Q = mp.eigsy(A)
- B = Q * mp.diag(D) * Q.transpose()
- C = A - B
- E = Q * Q.transpose() - mp.eye(A.rows)
- if verbose:
- print("eigenvalues:\n", D)
- print("eigenvectors:\n", Q)
- NC = mp.mnorm(C)
- NE = mp.mnorm(E)
- if verbose:
- print("difference:", NC, "\n", C, "\n")
- print("difference:", NE, "\n", E, "\n")
- eps = mp.exp( 0.8 * mp.log(mp.eps))
- assert NC < eps
- assert NE < eps
- return NC
- def run_eighe(A, verbose = False):
- if verbose:
- print("original matrix:\n", str(A))
- D, Q = mp.eighe(A)
- B = Q * mp.diag(D) * Q.transpose_conj()
- C = A - B
- E = Q * Q.transpose_conj() - mp.eye(A.rows)
- if verbose:
- print("eigenvalues:\n", D)
- print("eigenvectors:\n", Q)
- NC = mp.mnorm(C)
- NE = mp.mnorm(E)
- if verbose:
- print("difference:", NC, "\n", C, "\n")
- print("difference:", NE, "\n", E, "\n")
- eps = mp.exp( 0.8 * mp.log(mp.eps))
- assert NC < eps
- assert NE < eps
- return NC
- def run_svd_r(A, full_matrices = False, verbose = True):
- m, n = A.rows, A.cols
- eps = mp.exp(0.8 * mp.log(mp.eps))
- if verbose:
- print("original matrix:\n", str(A))
- print("full", full_matrices)
- U, S0, V = mp.svd_r(A, full_matrices = full_matrices)
- S = mp.zeros(U.cols, V.rows)
- for j in xrange(min(m, n)):
- S[j,j] = S0[j]
- if verbose:
- print("U:\n", str(U))
- print("S:\n", str(S0))
- print("V:\n", str(V))
- C = U * S * V - A
- err = mp.mnorm(C)
- if verbose:
- print("C\n", str(C), "\n", err)
- assert err < eps
- D = V * V.transpose() - mp.eye(V.rows)
- err = mp.mnorm(D)
- if verbose:
- print("D:\n", str(D), "\n", err)
- assert err < eps
- E = U.transpose() * U - mp.eye(U.cols)
- err = mp.mnorm(E)
- if verbose:
- print("E:\n", str(E), "\n", err)
- assert err < eps
- def run_svd_c(A, full_matrices = False, verbose = True):
- m, n = A.rows, A.cols
- eps = mp.exp(0.8 * mp.log(mp.eps))
- if verbose:
- print("original matrix:\n", str(A))
- print("full", full_matrices)
- U, S0, V = mp.svd_c(A, full_matrices = full_matrices)
- S = mp.zeros(U.cols, V.rows)
- for j in xrange(min(m, n)):
- S[j,j] = S0[j]
- if verbose:
- print("U:\n", str(U))
- print("S:\n", str(S0))
- print("V:\n", str(V))
- C = U * S * V - A
- err = mp.mnorm(C)
- if verbose:
- print("C\n", str(C), "\n", err)
- assert err < eps
- D = V * V.transpose_conj() - mp.eye(V.rows)
- err = mp.mnorm(D)
- if verbose:
- print("D:\n", str(D), "\n", err)
- assert err < eps
- E = U.transpose_conj() * U - mp.eye(U.cols)
- err = mp.mnorm(E)
- if verbose:
- print("E:\n", str(E), "\n", err)
- assert err < eps
- def run_gauss(qtype, a, b):
- eps = 1e-5
- d, e = mp.gauss_quadrature(len(a), qtype)
- d -= mp.matrix(a)
- e -= mp.matrix(b)
- assert mp.mnorm(d) < eps
- assert mp.mnorm(e) < eps
- def irandmatrix(n, range = 10):
- """
- random matrix with integer entries
- """
- A = mp.matrix(n, n)
- for i in xrange(n):
- for j in xrange(n):
- A[i,j]=int( (2 * mp.rand() - 1) * range)
- return A
- #######################
- def test_eighe_fixed_matrix():
- A = mp.matrix([[2, 3], [3, 5]])
- run_eigsy(A)
- run_eighe(A)
- A = mp.matrix([[7, -11], [-11, 13]])
- run_eigsy(A)
- run_eighe(A)
- A = mp.matrix([[2, 11, 7], [11, 3, 13], [7, 13, 5]])
- run_eigsy(A)
- run_eighe(A)
- A = mp.matrix([[2, 0, 7], [0, 3, 1], [7, 1, 5]])
- run_eigsy(A)
- run_eighe(A)
- #
- A = mp.matrix([[2, 3+7j], [3-7j, 5]])
- run_eighe(A)
- A = mp.matrix([[2, -11j, 0], [+11j, 3, 29j], [0, -29j, 5]])
- run_eighe(A)
- A = mp.matrix([[2, 11 + 17j, 7 + 19j], [11 - 17j, 3, -13 + 23j], [7 - 19j, -13 - 23j, 5]])
- run_eighe(A)
- def test_eigsy_randmatrix():
- N = 5
- for a in xrange(10):
- A = 2 * mp.randmatrix(N, N) - 1
- for i in xrange(0, N):
- for j in xrange(i + 1, N):
- A[j,i] = A[i,j]
- run_eigsy(A)
- def test_eighe_randmatrix():
- N = 5
- for a in xrange(10):
- A = (2 * mp.randmatrix(N, N) - 1) + 1j * (2 * mp.randmatrix(N, N) - 1)
- for i in xrange(0, N):
- A[i,i] = mp.re(A[i,i])
- for j in xrange(i + 1, N):
- A[j,i] = mp.conj(A[i,j])
- run_eighe(A)
- def test_eigsy_irandmatrix():
- N = 4
- R = 4
- for a in xrange(10):
- A=irandmatrix(N, R)
- for i in xrange(0, N):
- for j in xrange(i + 1, N):
- A[j,i] = A[i,j]
- run_eigsy(A)
- def test_eighe_irandmatrix():
- N = 4
- R = 4
- for a in xrange(10):
- A=irandmatrix(N, R) + 1j * irandmatrix(N, R)
- for i in xrange(0, N):
- A[i,i] = mp.re(A[i,i])
- for j in xrange(i + 1, N):
- A[j,i] = mp.conj(A[i,j])
- run_eighe(A)
- def test_svd_r_rand():
- for i in xrange(5):
- full = mp.rand() > 0.5
- m = 1 + int(mp.rand() * 10)
- n = 1 + int(mp.rand() * 10)
- A = 2 * mp.randmatrix(m, n) - 1
- if mp.rand() > 0.5:
- A *= 10
- for x in xrange(m):
- for y in xrange(n):
- A[x,y]=int(A[x,y])
- run_svd_r(A, full_matrices = full, verbose = False)
- def test_svd_c_rand():
- for i in xrange(5):
- full = mp.rand() > 0.5
- m = 1 + int(mp.rand() * 10)
- n = 1 + int(mp.rand() * 10)
- A = (2 * mp.randmatrix(m, n) - 1) + 1j * (2 * mp.randmatrix(m, n) - 1)
- if mp.rand() > 0.5:
- A *= 10
- for x in xrange(m):
- for y in xrange(n):
- A[x,y]=int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y]))
- run_svd_c(A, full_matrices=full, verbose=False)
- def test_svd_test_case():
- # a test case from Golub and Reinsch
- # (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).)
- eps = mp.exp(0.8 * mp.log(mp.eps))
- a = [[22, 10, 2, 3, 7],
- [14, 7, 10, 0, 8],
- [-1, 13, -1, -11, 3],
- [-3, -2, 13, -2, 4],
- [ 9, 8, 1, -2, 4],
- [ 9, 1, -7, 5, -1],
- [ 2, -6, 6, 5, 1],
- [ 4, 5, 0, -2, 2]]
- a = mp.matrix(a)
- b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0])
- S = mp.svd_r(a, compute_uv = False)
- S -= b
- assert mp.mnorm(S) < eps
- S = mp.svd_c(a, compute_uv = False)
- S -= b
- assert mp.mnorm(S) < eps
- def test_gauss_quadrature_static():
- a = [-0.57735027, 0.57735027]
- b = [ 1, 1]
- run_gauss("legendre", a , b)
- a = [ -0.906179846, -0.538469310, 0, 0.538469310, 0.906179846]
- b = [ 0.23692689, 0.47862867, 0.56888889, 0.47862867, 0.23692689]
- run_gauss("legendre", a , b)
- a = [ 0.06943184, 0.33000948, 0.66999052, 0.93056816]
- b = [ 0.17392742, 0.32607258, 0.32607258, 0.17392742]
- run_gauss("legendre01", a , b)
- a = [-0.70710678, 0.70710678]
- b = [ 0.88622693, 0.88622693]
- run_gauss("hermite", a , b)
- a = [ -2.02018287, -0.958572465, 0, 0.958572465, 2.02018287]
- b = [ 0.01995324, 0.39361932, 0.94530872, 0.39361932, 0.01995324]
- run_gauss("hermite", a , b)
- a = [ 0.41577456, 2.29428036, 6.28994508]
- b = [ 0.71109301, 0.27851773, 0.01038926]
- run_gauss("laguerre", a , b)
- def test_gauss_quadrature_dynamic(verbose = False):
- n = 5
- A = mp.randmatrix(2 * n, 1)
- def F(x):
- r = 0
- for i in xrange(len(A) - 1, -1, -1):
- r = r * x + A[i]
- return r
- def run(qtype, FW, R, alpha = 0, beta = 0):
- X, W = mp.gauss_quadrature(n, qtype, alpha = alpha, beta = beta)
- a = 0
- for i in xrange(len(X)):
- a += W[i] * F(X[i])
- b = mp.quad(lambda x: FW(x) * F(x), R)
- c = mp.fabs(a - b)
- if verbose:
- print(qtype, c, a, b)
- assert c < 1e-5
- run("legendre", lambda x: 1, [-1, 1])
- run("legendre01", lambda x: 1, [0, 1])
- run("hermite", lambda x: mp.exp(-x*x), [-mp.inf, mp.inf])
- run("laguerre", lambda x: mp.exp(-x), [0, mp.inf])
- run("glaguerre", lambda x: mp.sqrt(x)*mp.exp(-x), [0, mp.inf], alpha = 1 / mp.mpf(2))
- run("chebyshev1", lambda x: 1/mp.sqrt(1-x*x), [-1, 1])
- run("chebyshev2", lambda x: mp.sqrt(1-x*x), [-1, 1])
- run("jacobi", lambda x: (1-x)**(1/mp.mpf(3)) * (1+x)**(1/mp.mpf(5)), [-1, 1], alpha = 1 / mp.mpf(3), beta = 1 / mp.mpf(5) )
|