12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154 |
- from __future__ import print_function
- from ..libmp.backend import xrange
- from .functions import defun, defun_wrapped, defun_static
- @defun
- def stieltjes(ctx, n, a=1):
- n = ctx.convert(n)
- a = ctx.convert(a)
- if n < 0:
- return ctx.bad_domain("Stieltjes constants defined for n >= 0")
- if hasattr(ctx, "stieltjes_cache"):
- stieltjes_cache = ctx.stieltjes_cache
- else:
- stieltjes_cache = ctx.stieltjes_cache = {}
- if a == 1:
- if n == 0:
- return +ctx.euler
- if n in stieltjes_cache:
- prec, s = stieltjes_cache[n]
- if prec >= ctx.prec:
- return +s
- mag = 1
- def f(x):
- xa = x/a
- v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
- return ctx._re(v) / mag
- orig = ctx.prec
- try:
- # Normalize integrand by approx. magnitude to
- # speed up quadrature (which uses absolute error)
- if n > 50:
- ctx.prec = 20
- mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
- ctx.prec = orig + 10 + int(n**0.5)
- s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
- v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
- finally:
- ctx.prec = orig
- if a == 1 and ctx.isint(n):
- stieltjes_cache[n] = (ctx.prec, v)
- return +v
- @defun_wrapped
- def siegeltheta(ctx, t, derivative=0):
- d = int(derivative)
- if (t == ctx.inf or t == ctx.ninf):
- if d < 2:
- if t == ctx.ninf and d == 0:
- return ctx.ninf
- return ctx.inf
- else:
- return ctx.zero
- if d == 0:
- if ctx._im(t):
- # XXX: cancellation occurs
- a = ctx.loggamma(0.25+0.5j*t)
- b = ctx.loggamma(0.25-0.5j*t)
- return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
- else:
- if ctx.isinf(t):
- return t
- return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
- if d > 0:
- a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t)
- b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t)
- if ctx._im(t):
- if d == 1:
- return -0.5*ctx.log(ctx.pi)+0.25*(a+b)
- else:
- return 0.25*(a+b)
- else:
- if d == 1:
- return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b))
- else:
- return ctx._re(0.25*(a+b))
- @defun_wrapped
- def grampoint(ctx, n):
- # asymptotic expansion, from
- # http://mathworld.wolfram.com/GramPoint.html
- g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
- return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)
- @defun_wrapped
- def siegelz(ctx, t, **kwargs):
- d = int(kwargs.get("derivative", 0))
- t = ctx.convert(t)
- t1 = ctx._re(t)
- t2 = ctx._im(t)
- prec = ctx.prec
- try:
- if abs(t1) > 500*prec and t2**2 < t1:
- v = ctx.rs_z(t, d)
- if ctx._is_real_type(t):
- return ctx._re(v)
- return v
- except NotImplementedError:
- pass
- ctx.prec += 21
- e1 = ctx.expj(ctx.siegeltheta(t))
- z = ctx.zeta(0.5+ctx.j*t)
- if d == 0:
- v = e1*z
- ctx.prec=prec
- if ctx._is_real_type(t):
- return ctx._re(v)
- return +v
- z1 = ctx.zeta(0.5+ctx.j*t, derivative=1)
- theta1 = ctx.siegeltheta(t, derivative=1)
- if d == 1:
- v = ctx.j*e1*(z1+z*theta1)
- ctx.prec=prec
- if ctx._is_real_type(t):
- return ctx._re(v)
- return +v
- z2 = ctx.zeta(0.5+ctx.j*t, derivative=2)
- theta2 = ctx.siegeltheta(t, derivative=2)
- comb1 = theta1**2-ctx.j*theta2
- if d == 2:
- def terms():
- return [2*z1*theta1, z2, z*comb1]
- v = ctx.sum_accurately(terms, 1)
- v = -e1*v
- ctx.prec = prec
- if ctx._is_real_type(t):
- return ctx._re(v)
- return +v
- ctx.prec += 10
- z3 = ctx.zeta(0.5+ctx.j*t, derivative=3)
- theta3 = ctx.siegeltheta(t, derivative=3)
- comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3
- if d == 3:
- def terms():
- return [3*theta1*z2, 3*z1*comb1, z3+z*comb2]
- v = ctx.sum_accurately(terms, 1)
- v = -ctx.j*e1*v
- ctx.prec = prec
- if ctx._is_real_type(t):
- return ctx._re(v)
- return +v
- z4 = ctx.zeta(0.5+ctx.j*t, derivative=4)
- theta4 = ctx.siegeltheta(t, derivative=4)
- def terms():
- return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2,
- -4*theta1*theta3, ctx.j*theta4]
- comb3 = ctx.sum_accurately(terms, 1)
- if d == 4:
- def terms():
- return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3,
- 4*z1*comb2, z4, z*comb3]
- v = ctx.sum_accurately(terms, 1)
- v = e1*v
- ctx.prec = prec
- if ctx._is_real_type(t):
- return ctx._re(v)
- return +v
- if d > 4:
- h = lambda x: ctx.siegelz(x, derivative=4)
- return ctx.diff(h, t, n=d-4)
- _zeta_zeros = [
- 14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
- 37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
- 52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
- 67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
- 79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
- 92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
- 103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
- 114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
- 124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
- 134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
- 146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
- 156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
- 165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
- 174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
- 184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
- 193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
- 202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
- 211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
- 220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
- 229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
- ]
- def _load_zeta_zeros(url):
- import urllib
- d = urllib.urlopen(url)
- L = [float(x) for x in d.readlines()]
- # Sanity check
- assert round(L[0]) == 14
- _zeta_zeros[:] = L
- @defun
- def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
- n = int(n)
- if n < 0:
- return ctx.zetazero(-n).conjugate()
- if n == 0:
- raise ValueError("n must be nonzero")
- if n > len(_zeta_zeros) and n <= 100000:
- _load_zeta_zeros(url)
- if n > len(_zeta_zeros):
- raise NotImplementedError("n too large for zetazeros")
- return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))
- @defun_wrapped
- def riemannr(ctx, x):
- if x == 0:
- return ctx.zero
- # Check if a simple asymptotic estimate is accurate enough
- if abs(x) > 1000:
- a = ctx.li(x)
- b = 0.5*ctx.li(ctx.sqrt(x))
- if abs(b) < abs(a)*ctx.eps:
- return a
- if abs(x) < 0.01:
- # XXX
- ctx.prec += int(-ctx.log(abs(x),2))
- # Sum Gram's series
- s = t = ctx.one
- u = ctx.ln(x)
- k = 1
- while abs(t) > abs(s)*ctx.eps:
- t = t * u / k
- s += t / (k * ctx._zeta_int(k+1))
- k += 1
- return s
- @defun_static
- def primepi(ctx, x):
- x = int(x)
- if x < 2:
- return 0
- return len(ctx.list_primes(x))
- # TODO: fix the interface wrt contexts
- @defun_wrapped
- def primepi2(ctx, x):
- x = int(x)
- if x < 2:
- return ctx._iv.zero
- if x < 2657:
- return ctx._iv.mpf(ctx.primepi(x))
- mid = ctx.li(x)
- # Schoenfeld's estimate for x >= 2657, assuming RH
- err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
- a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d')
- b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u')
- return ctx._iv.mpf([a,b])
- @defun_wrapped
- def primezeta(ctx, s):
- if ctx.isnan(s):
- return s
- if ctx.re(s) <= 0:
- raise ValueError("prime zeta function defined only for re(s) > 0")
- if s == 1:
- return ctx.inf
- if s == 0.5:
- return ctx.mpc(ctx.ninf, ctx.pi)
- r = ctx.re(s)
- if r > ctx.prec:
- return 0.5**s
- else:
- wp = ctx.prec + int(r)
- def terms():
- orig = ctx.prec
- # zeta ~ 1+eps; need to set precision
- # to get logarithm accurately
- k = 0
- while 1:
- k += 1
- u = ctx.moebius(k)
- if not u:
- continue
- ctx.prec = wp
- t = u*ctx.ln(ctx.zeta(k*s))/k
- if not t:
- return
- #print ctx.prec, ctx.nstr(t)
- ctx.prec = orig
- yield t
- return ctx.sum_accurately(terms)
- # TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered
- @defun_wrapped
- def bernpoly(ctx, n, z):
- # Slow implementation:
- #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
- n = int(n)
- if n < 0:
- raise ValueError("Bernoulli polynomials only defined for n >= 0")
- if z == 0 or (z == 1 and n > 1):
- return ctx.bernoulli(n)
- if z == 0.5:
- return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
- if n <= 3:
- if n == 0: return z ** 0
- if n == 1: return z - 0.5
- if n == 2: return (6*z*(z-1)+1)/6
- if n == 3: return z*(z*(z-1.5)+0.5)
- if ctx.isinf(z):
- return z ** n
- if ctx.isnan(z):
- return z
- if abs(z) > 2:
- def terms():
- t = ctx.one
- yield t
- r = ctx.one/z
- k = 1
- while k <= n:
- t = t*(n+1-k)/k*r
- if not (k > 2 and k & 1):
- yield t*ctx.bernoulli(k)
- k += 1
- return ctx.sum_accurately(terms) * z**n
- else:
- def terms():
- yield ctx.bernoulli(n)
- t = ctx.one
- k = 1
- while k <= n:
- t = t*(n+1-k)/k * z
- m = n-k
- if not (m > 2 and m & 1):
- yield t*ctx.bernoulli(m)
- k += 1
- return ctx.sum_accurately(terms)
- @defun_wrapped
- def eulerpoly(ctx, n, z):
- n = int(n)
- if n < 0:
- raise ValueError("Euler polynomials only defined for n >= 0")
- if n <= 2:
- if n == 0: return z ** 0
- if n == 1: return z - 0.5
- if n == 2: return z*(z-1)
- if ctx.isinf(z):
- return z**n
- if ctx.isnan(z):
- return z
- m = n+1
- if z == 0:
- return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
- if z == 1:
- return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
- if z == 0.5:
- if n % 2:
- return ctx.zero
- # Use exact code for Euler numbers
- if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
- return ctx.ldexp(ctx._eulernum(n), -n)
- # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
- def terms():
- t = ctx.one
- k = 0
- w = ctx.ldexp(1,n+2)
- while 1:
- v = n-k+1
- if not (v > 2 and v & 1):
- yield (2-w)*ctx.bernoulli(v)*t
- k += 1
- if k > n:
- break
- t = t*z*(n-k+2)/k
- w *= 0.5
- return ctx.sum_accurately(terms) / m
- @defun
- def eulernum(ctx, n, exact=False):
- n = int(n)
- if exact:
- return int(ctx._eulernum(n))
- if n < 100:
- return ctx.mpf(ctx._eulernum(n))
- if n % 2:
- return ctx.zero
- return ctx.ldexp(ctx.eulerpoly(n,0.5), n)
- # TODO: this should be implemented low-level
- def polylog_series(ctx, s, z):
- tol = +ctx.eps
- l = ctx.zero
- k = 1
- zk = z
- while 1:
- term = zk / k**s
- l += term
- if abs(term) < tol:
- break
- zk *= z
- k += 1
- return l
- def polylog_continuation(ctx, n, z):
- if n < 0:
- return z*0
- twopij = 2j * ctx.pi
- a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
- if ctx._is_real_type(z) and z < 0:
- a = ctx._re(a)
- if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
- a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
- return a
- def polylog_unitcircle(ctx, n, z):
- tol = +ctx.eps
- if n > 1:
- l = ctx.zero
- logz = ctx.ln(z)
- logmz = ctx.one
- m = 0
- while 1:
- if (n-m) != 1:
- term = ctx.zeta(n-m) * logmz / ctx.fac(m)
- if term and abs(term) < tol:
- break
- l += term
- logmz *= logz
- m += 1
- l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
- elif n < 1: # else
- l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
- logz = ctx.ln(z)
- logkz = ctx.one
- k = 0
- while 1:
- b = ctx.bernoulli(k-n+1)
- if b:
- term = b*logkz/(ctx.fac(k)*(k-n+1))
- if abs(term) < tol:
- break
- l -= term
- logkz *= logz
- k += 1
- else:
- raise ValueError
- if ctx._is_real_type(z) and z < 0:
- l = ctx._re(l)
- return l
- def polylog_general(ctx, s, z):
- v = ctx.zero
- u = ctx.ln(z)
- if not abs(u) < 5: # theoretically |u| < 2*pi
- j = ctx.j
- v = 1-s
- y = ctx.ln(-z)/(2*ctx.pi*j)
- return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v
- t = 1
- k = 0
- while 1:
- term = ctx.zeta(s-k) * t
- if abs(term) < ctx.eps:
- break
- v += term
- k += 1
- t *= u
- t /= k
- return ctx.gamma(1-s)*(-u)**(s-1) + v
- @defun_wrapped
- def polylog(ctx, s, z):
- s = ctx.convert(s)
- z = ctx.convert(z)
- if z == 1:
- return ctx.zeta(s)
- if z == -1:
- return -ctx.altzeta(s)
- if s == 0:
- return z/(1-z)
- if s == 1:
- return -ctx.ln(1-z)
- if s == -1:
- return z/(1-z)**2
- if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
- return polylog_series(ctx, s, z)
- if abs(z) >= 1.4 and ctx.isint(s):
- return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z)
- if ctx.isint(s):
- return polylog_unitcircle(ctx, int(ctx.re(s)), z)
- return polylog_general(ctx, s, z)
- @defun_wrapped
- def clsin(ctx, s, z, pi=False):
- if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
- return z*0
- if pi:
- a = ctx.expjpi(z)
- else:
- a = ctx.expj(z)
- if ctx._is_real_type(z) and ctx._is_real_type(s):
- return ctx.im(ctx.polylog(s,a))
- b = 1/a
- return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))
- @defun_wrapped
- def clcos(ctx, s, z, pi=False):
- if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
- return z*0
- if pi:
- a = ctx.expjpi(z)
- else:
- a = ctx.expj(z)
- if ctx._is_real_type(z) and ctx._is_real_type(s):
- return ctx.re(ctx.polylog(s,a))
- b = 1/a
- return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))
- @defun
- def altzeta(ctx, s, **kwargs):
- try:
- return ctx._altzeta(s, **kwargs)
- except NotImplementedError:
- return ctx._altzeta_generic(s)
- @defun_wrapped
- def _altzeta_generic(ctx, s):
- if s == 1:
- return ctx.ln2 + 0*s
- return -ctx.powm1(2, 1-s) * ctx.zeta(s)
- @defun
- def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
- d = int(derivative)
- if a == 1 and not (d or method):
- try:
- return ctx._zeta(s, **kwargs)
- except NotImplementedError:
- pass
- s = ctx.convert(s)
- prec = ctx.prec
- method = kwargs.get('method')
- verbose = kwargs.get('verbose')
- if (not s) and (not derivative):
- return ctx.mpf(0.5) - ctx._convert_param(a)[0]
- if a == 1 and method != 'euler-maclaurin':
- im = abs(ctx._im(s))
- re = abs(ctx._re(s))
- #if (im < prec or method == 'borwein') and not derivative:
- # try:
- # if verbose:
- # print "zeta: Attempting to use the Borwein algorithm"
- # return ctx._zeta(s, **kwargs)
- # except NotImplementedError:
- # if verbose:
- # print "zeta: Could not use the Borwein algorithm"
- # pass
- if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \
- method == 'riemann-siegel':
- try: # py2.4 compatible try block
- try:
- if verbose:
- print("zeta: Attempting to use the Riemann-Siegel algorithm")
- return ctx.rs_zeta(s, derivative, **kwargs)
- except NotImplementedError:
- if verbose:
- print("zeta: Could not use the Riemann-Siegel algorithm")
- pass
- finally:
- ctx.prec = prec
- if s == 1:
- return ctx.inf
- abss = abs(s)
- if abss == ctx.inf:
- if ctx.re(s) == ctx.inf:
- if d == 0:
- return ctx.one
- return ctx.zero
- return s*0
- elif ctx.isnan(abss):
- return 1/s
- if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
- return ctx.one + ctx.power(2, -s)
- return +ctx._hurwitz(s, a, d, **kwargs)
- @defun
- def _hurwitz(ctx, s, a=1, d=0, **kwargs):
- prec = ctx.prec
- verbose = kwargs.get('verbose')
- try:
- extraprec = 10
- ctx.prec += extraprec
- # We strongly want to special-case rational a
- a, atype = ctx._convert_param(a)
- if ctx.re(s) < 0:
- if verbose:
- print("zeta: Attempting reflection formula")
- try:
- return _hurwitz_reflection(ctx, s, a, d, atype)
- except NotImplementedError:
- pass
- if verbose:
- print("zeta: Reflection formula failed")
- if verbose:
- print("zeta: Using the Euler-Maclaurin algorithm")
- while 1:
- ctx.prec = prec + extraprec
- T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose)
- cancellation = ctx.mag(T1) - ctx.mag(T1+T2)
- if verbose:
- print("Term 1:", T1)
- print("Term 2:", T2)
- print("Cancellation:", cancellation, "bits")
- if cancellation < extraprec:
- return T1 + T2
- else:
- extraprec = max(2*extraprec, min(cancellation + 5, 100*prec))
- if extraprec > kwargs.get('maxprec', 100*prec):
- raise ctx.NoConvergence("zeta: too much cancellation")
- finally:
- ctx.prec = prec
- def _hurwitz_reflection(ctx, s, a, d, atype):
- # TODO: implement for derivatives
- if d != 0:
- raise NotImplementedError
- res = ctx.re(s)
- negs = -s
- # Integer reflection formula
- if ctx.isnpint(s):
- n = int(res)
- if n <= 0:
- return ctx.bernpoly(1-n, a) / (n-1)
- if not (atype == 'Q' or atype == 'Z'):
- raise NotImplementedError
- t = 1-s
- # We now require a to be standardized
- v = 0
- shift = 0
- b = a
- while ctx.re(b) > 1:
- b -= 1
- v -= b**negs
- shift -= 1
- while ctx.re(b) <= 0:
- v += b**negs
- b += 1
- shift += 1
- # Rational reflection formula
- try:
- p, q = a._mpq_
- except:
- assert a == int(a)
- p = int(a)
- q = 1
- p += shift*q
- assert 1 <= p <= q
- g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
- for k in range(1,q+1))
- g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
- v += g
- return v
- def _hurwitz_em(ctx, s, a, d, prec, verbose):
- # May not be converted at this point
- a = ctx.convert(a)
- tol = -prec
- # Estimate number of terms for Euler-Maclaurin summation; could be improved
- M1 = 0
- M2 = prec // 3
- N = M2
- lsum = 0
- # This speeds up the recurrence for derivatives
- if ctx.isint(s):
- s = int(ctx._re(s))
- s1 = s-1
- while 1:
- # Truncated L-series
- l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
- #if d:
- # l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
- #else:
- # l = ctx.fsum((n+a)**negs for n in range(M1,M2))
- lsum += l
- M2a = M2+a
- logM2a = ctx.ln(M2a)
- logM2ad = logM2a**d
- logs = [logM2ad]
- logr = 1/logM2a
- rM2a = 1/M2a
- M2as = M2a**(-s)
- if d:
- tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
- else:
- tailsum = 1/((s1)*(M2a)**s1)
- tailsum += 0.5 * logM2ad * M2as
- U = [1]
- r = M2as
- fact = 2
- for j in range(1, N+1):
- # TODO: the following could perhaps be tidied a bit
- j2 = 2*j
- if j == 1:
- upds = [1]
- else:
- upds = [j2-2, j2-1]
- for m in upds:
- D = min(m,d+1)
- if m <= d:
- logs.append(logs[-1] * logr)
- Un = [0]*(D+1)
- for i in xrange(D): Un[i] = (1-m-s)*U[i]
- for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
- U = Un
- r *= rM2a
- t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
- tailsum += t
- if ctx.mag(t) < tol:
- return lsum, (-1)**d * tailsum
- fact *= (j2+1)*(j2+2)
- if verbose:
- print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol)
- M1, M2 = M2, M2*2
- if ctx.re(s) < 0:
- N += N//2
- @defun
- def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
- """
- Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where
- xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s )
- ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) )
- D^k = kth derivative with respect to s, k ranges over the given list of
- derivatives (which should consist of either a single element
- or a range 0,1,...r). If reflect=False, the ydks are not computed.
- """
- #print "zetasum", s, a, n
- # don't use the fixed-point code if there are large exponentials
- if abs(ctx.re(s)) < 0.5 * ctx.prec:
- try:
- return ctx._zetasum_fast(s, a, n, derivatives, reflect)
- except NotImplementedError:
- pass
- negs = ctx.fneg(s, exact=True)
- have_derivatives = derivatives != [0]
- have_one_derivative = len(derivatives) == 1
- if not reflect:
- if not have_derivatives:
- return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
- if have_one_derivative:
- d = derivatives[0]
- x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
- return [(-1)**d * x], []
- maxd = max(derivatives)
- if not have_one_derivative:
- derivatives = range(maxd+1)
- xs = [ctx.zero for d in derivatives]
- if reflect:
- ys = [ctx.zero for d in derivatives]
- else:
- ys = []
- for k in xrange(n+1):
- w = a + k
- xterm = w ** negs
- if reflect:
- yterm = ctx.conj(ctx.one / (w * xterm))
- if have_derivatives:
- logw = -ctx.ln(w)
- if have_one_derivative:
- logw = logw ** maxd
- xs[0] += xterm * logw
- if reflect:
- ys[0] += yterm * logw
- else:
- t = ctx.one
- for d in derivatives:
- xs[d] += xterm * t
- if reflect:
- ys[d] += yterm * t
- t *= logw
- else:
- xs[0] += xterm
- if reflect:
- ys[0] += yterm
- return xs, ys
- @defun
- def dirichlet(ctx, s, chi=[1], derivative=0):
- s = ctx.convert(s)
- q = len(chi)
- d = int(derivative)
- if d > 2:
- raise NotImplementedError("arbitrary order derivatives")
- prec = ctx.prec
- try:
- ctx.prec += 10
- if s == 1:
- have_pole = True
- for x in chi:
- if x and x != 1:
- have_pole = False
- h = +ctx.eps
- ctx.prec *= 2*(d+1)
- s += h
- if have_pole:
- return +ctx.inf
- z = ctx.zero
- for p in range(1,q+1):
- if chi[p%q]:
- if d == 1:
- z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
- ctx.zeta(s, (p,q))*ctx.log(q))
- else:
- z += chi[p%q] * ctx.zeta(s, (p,q))
- z /= q**s
- finally:
- ctx.prec = prec
- return +z
- def secondzeta_main_term(ctx, s, a, **kwargs):
- tol = ctx.eps
- f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s)
- totsum = term = ctx.zero
- mg = ctx.inf
- n = 0
- while mg > tol:
- totsum += term
- n += 1
- gamm = ctx.im(ctx.zetazero_memoized(n))
- term = f(n)
- mg = abs(term)
- err = 0
- if kwargs.get("error"):
- sg = ctx.re(s)
- err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\
- ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2))
- err = abs(err)
- return +totsum, err, n
- def secondzeta_prime_term(ctx, s, a, **kwargs):
- tol = ctx.eps
- f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\
- ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\
- (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi))
- totsum = term = ctx.zero
- mg = ctx.inf
- n = 1
- while mg > tol or n < 9:
- totsum += term
- n += 1
- term = f(n)
- if term == 0:
- mg = ctx.inf
- else:
- mg = abs(term)
- if kwargs.get("error"):
- err = mg
- return +totsum, err, n
- def secondzeta_exp_term(ctx, s, a):
- if ctx.isint(s) and ctx.re(s) <= 0:
- m = int(round(ctx.re(s)))
- if not m & 1:
- return ctx.mpf('-0.25')**(-m//2)
- tol = ctx.eps
- f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n))
- totsum = ctx.zero
- term = f(0)
- mg = ctx.inf
- n = 0
- while mg > tol:
- totsum += term
- n += 1
- term = f(n)
- mg = abs(term)
- v = a**(0.5*s)*totsum/ctx.gamma(0.5*s)
- return v
- def secondzeta_singular_term(ctx, s, a, **kwargs):
- factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
- extraprec = ctx.mag(factor)
- ctx.prec += extraprec
- factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
- tol = ctx.eps
- f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\
- ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n))
- totsum = ctx.zero
- mg1 = ctx.inf
- n = 1
- term = f(n)
- mg2 = abs(term)
- while mg2 > tol and mg2 <= mg1:
- totsum += term
- n += 1
- term = f(n)
- totsum += term
- n +=1
- term = f(n)
- mg1 = mg2
- mg2 = abs(term)
- totsum += term
- pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1)
- st = factor*(pole+totsum)
- err = 0
- if kwargs.get("error"):
- if not ((mg2 > tol) and (mg2 <= mg1)):
- if mg2 <= tol:
- err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10))
- if mg2 > mg1:
- err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10))
- err = max(err, ctx.eps*1.)
- ctx.prec -= extraprec
- return +st, err
- @defun
- def secondzeta(ctx, s, a = 0.015, **kwargs):
- r"""
- Evaluates the secondary zeta function `Z(s)`, defined for
- `\mathrm{Re}(s)>1` by
- .. math ::
- Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s}
- where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with
- imaginary part positive.
- `Z(s)` extends to a meromorphic function on `\mathbb{C}` with a
- double pole at `s=1` and simple poles at the points `-2n` for
- `n=0`, 1, 2, ...
- **Examples**
- >>> from mpmath import *
- >>> mp.pretty = True; mp.dps = 15
- >>> secondzeta(2)
- 0.023104993115419
- >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s)
- >>> Xi = lambda t: xi(0.5+t*j)
- >>> chop(-0.5*diff(Xi,0,n=2)/Xi(0))
- 0.023104993115419
- We may ask for an approximate error value::
- >>> secondzeta(0.5+100j, error=True)
- ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16)
- The function has poles at the negative odd integers,
- and dyadic rational values at the negative even integers::
- >>> mp.dps = 30
- >>> secondzeta(-8)
- -0.67236328125
- >>> secondzeta(-7)
- +inf
- **Implementation notes**
- The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)`
- respectively main, prime, exponential and singular terms.
- The main term `A(s)` is computed from the zeros of zeta.
- The prime term depends on the von Mangoldt function.
- The singular term is responsible for the poles of the function.
- The four terms depends on a small parameter `a`. We may change the
- value of `a`. Theoretically this has no effect on the sum of the four
- terms, but in practice may be important.
- A smaller value of the parameter `a` makes `A(s)` depend on
- a smaller number of zeros of zeta, but `P(s)` uses more values of
- von Mangoldt function.
- We may also add a verbose option to obtain data about the
- values of the four terms.
- >>> mp.dps = 10
- >>> secondzeta(0.5 + 40j, error=True, verbose=True)
- main term = (-30190318549.138656312556 - 13964804384.624622876523j)
- computed using 19 zeros of zeta
- prime term = (132717176.89212754625045 + 188980555.17563978290601j)
- computed using 9 values of the von Mangoldt function
- exponential term = (542447428666.07179812536 + 362434922978.80192435203j)
- singular term = (512124392939.98154322355 + 348281138038.65531023921j)
- ((0.059471043 + 0.3463514534j), 1.455191523e-11)
- >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True)
- main term = (-151962888.19606243907725 - 217930683.90210294051982j)
- computed using 9 zeros of zeta
- prime term = (2476659342.3038722372461 + 28711581821.921627163136j)
- computed using 37 values of the von Mangoldt function
- exponential term = (178506047114.7838188264 + 819674143244.45677330576j)
- singular term = (175877424884.22441310708 + 790744630738.28669174871j)
- ((0.059471043 + 0.3463514534j), 1.455191523e-11)
- Notice the great cancellation between the four terms. Changing `a`, the
- four terms are very different numbers but the cancellation gives
- the good value of Z(s).
- **References**
- A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier,
- 53, (2003) 665--699.
- A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes
- of the Unione Matematica Italiana, Springer, 2009.
- """
- s = ctx.convert(s)
- a = ctx.convert(a)
- tol = ctx.eps
- if ctx.isint(s) and ctx.re(s) <= 1:
- if abs(s-1) < tol*1000:
- return ctx.inf
- m = int(round(ctx.re(s)))
- if m & 1:
- return ctx.inf
- else:
- return ((-1)**(-m//2)*\
- ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3)))
- prec = ctx.prec
- try:
- t3 = secondzeta_exp_term(ctx, s, a)
- extraprec = max(ctx.mag(t3),0)
- ctx.prec += extraprec + 3
- t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True')
- t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True')
- t4, r4 = secondzeta_singular_term(ctx,s,a,error='True')
- t3 = secondzeta_exp_term(ctx, s, a)
- err = r1+r2+r4
- t = t1-t2+t3-t4
- if kwargs.get("verbose"):
- print('main term =', t1)
- print(' computed using', gt, 'zeros of zeta')
- print('prime term =', t2)
- print(' computed using', pt, 'values of the von Mangoldt function')
- print('exponential term =', t3)
- print('singular term =', t4)
- finally:
- ctx.prec = prec
- if kwargs.get("error"):
- w = max(ctx.mag(abs(t)),0)
- err = max(err*2**w, ctx.eps*1.*2**w)
- return +t, err
- return +t
- @defun_wrapped
- def lerchphi(ctx, z, s, a):
- r"""
- Gives the Lerch transcendent, defined for `|z| < 1` and
- `\Re{a} > 0` by
- .. math ::
- \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}
- and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}`
- along with the integral representation valid for `\Re{a} > 0`
- .. math ::
- \Phi(z,s,a) = \frac{1}{2 a^s} +
- \int_0^{\infty} \frac{z^t}{(a+t)^s} dt -
- 2 \int_0^{\infty} \frac{\sin(t \log z - s
- \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2}
- (e^{2 \pi t}-1)} dt.
- The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta`
- (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`).
- **Examples**
- Several evaluations in terms of simpler functions::
- >>> from mpmath import *
- >>> mp.dps = 25; mp.pretty = True
- >>> lerchphi(-1,2,0.5); 4*catalan
- 3.663862376708876060218414
- 3.663862376708876060218414
- >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2)
- 0.2131391994087528954617607
- 0.2131391994087528954617607
- >>> lerchphi(-4,1,1); log(5)/4
- 0.4023594781085250936501898
- 0.4023594781085250936501898
- >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j)
- (1.142423447120257137774002 + 0.2118232380980201350495795j)
- (1.142423447120257137774002 + 0.2118232380980201350495795j)
- Evaluation works for complex arguments and `|z| \ge 1`::
- >>> lerchphi(1+2j, 3-j, 4+2j)
- (0.002025009957009908600539469 + 0.003327897536813558807438089j)
- >>> lerchphi(-2,2,-2.5)
- -12.28676272353094275265944
- >>> lerchphi(10,10,10)
- (-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j)
- >>> lerchphi(10,10,-10.5)
- (112658784011940.5605789002 - 498113185.5756221777743631j)
- Some degenerate cases::
- >>> lerchphi(0,1,2)
- 0.5
- >>> lerchphi(0,1,-2)
- -0.5
- Reduction to simpler functions::
- >>> lerchphi(1, 4.25+1j, 1)
- (1.044674457556746668033975 - 0.04674508654012658932271226j)
- >>> zeta(4.25+1j)
- (1.044674457556746668033975 - 0.04674508654012658932271226j)
- >>> lerchphi(1 - 0.5**10, 4.25+1j, 1)
- (1.044629338021507546737197 - 0.04667768813963388181708101j)
- >>> lerchphi(3, 4, 1)
- (1.249503297023366545192592 - 0.2314252413375664776474462j)
- >>> polylog(4, 3) / 3
- (1.249503297023366545192592 - 0.2314252413375664776474462j)
- >>> lerchphi(3, 4, 1 - 0.5**10)
- (1.253978063946663945672674 - 0.2316736622836535468765376j)
- **References**
- 1. [DLMF]_ section 25.14
- """
- if z == 0:
- return a ** (-s)
- # Faster, but these cases are useful for testing right now
- if z == 1:
- return ctx.zeta(s, a)
- if a == 1:
- return ctx.polylog(s, z) / z
- if ctx.re(a) < 1:
- if ctx.isnpint(a):
- raise ValueError("Lerch transcendent complex infinity")
- m = int(ctx.ceil(1-ctx.re(a)))
- v = ctx.zero
- zpow = ctx.one
- for n in xrange(m):
- v += zpow / (a+n)**s
- zpow *= z
- return zpow * ctx.lerchphi(z,s, a+m) + v
- g = ctx.ln(z)
- v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a
- h = s / 2
- r = 2*ctx.pi
- f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \
- ((a**2+t**2)**h * ctx.expm1(r*t))
- v += 2*ctx.quad(f, [0, ctx.inf])
- if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1:
- v = ctx.chop(v)
- return v
|