__init__.pyi 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. import cv2
  2. import cv2.typing
  3. import typing
  4. # Enumerations
  5. VAR_NUMERICAL: int
  6. VAR_ORDERED: int
  7. VAR_CATEGORICAL: int
  8. VariableTypes = int
  9. """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
  10. TEST_ERROR: int
  11. TRAIN_ERROR: int
  12. ErrorTypes = int
  13. """One of [TEST_ERROR, TRAIN_ERROR]"""
  14. ROW_SAMPLE: int
  15. COL_SAMPLE: int
  16. SampleTypes = int
  17. """One of [ROW_SAMPLE, COL_SAMPLE]"""
  18. StatModel_UPDATE_MODEL: int
  19. STAT_MODEL_UPDATE_MODEL: int
  20. StatModel_RAW_OUTPUT: int
  21. STAT_MODEL_RAW_OUTPUT: int
  22. StatModel_COMPRESSED_INPUT: int
  23. STAT_MODEL_COMPRESSED_INPUT: int
  24. StatModel_PREPROCESSED_INPUT: int
  25. STAT_MODEL_PREPROCESSED_INPUT: int
  26. StatModel_Flags = int
  27. """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
  28. KNearest_BRUTE_FORCE: int
  29. KNEAREST_BRUTE_FORCE: int
  30. KNearest_KDTREE: int
  31. KNEAREST_KDTREE: int
  32. KNearest_Types = int
  33. """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
  34. SVM_C_SVC: int
  35. SVM_NU_SVC: int
  36. SVM_ONE_CLASS: int
  37. SVM_EPS_SVR: int
  38. SVM_NU_SVR: int
  39. SVM_Types = int
  40. """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
  41. SVM_CUSTOM: int
  42. SVM_LINEAR: int
  43. SVM_POLY: int
  44. SVM_RBF: int
  45. SVM_SIGMOID: int
  46. SVM_CHI2: int
  47. SVM_INTER: int
  48. SVM_KernelTypes = int
  49. """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
  50. SVM_C: int
  51. SVM_GAMMA: int
  52. SVM_P: int
  53. SVM_NU: int
  54. SVM_COEF: int
  55. SVM_DEGREE: int
  56. SVM_ParamTypes = int
  57. """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
  58. EM_COV_MAT_SPHERICAL: int
  59. EM_COV_MAT_DIAGONAL: int
  60. EM_COV_MAT_GENERIC: int
  61. EM_COV_MAT_DEFAULT: int
  62. EM_Types = int
  63. """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
  64. EM_DEFAULT_NCLUSTERS: int
  65. EM_DEFAULT_MAX_ITERS: int
  66. EM_START_E_STEP: int
  67. EM_START_M_STEP: int
  68. EM_START_AUTO_STEP: int
  69. DTrees_PREDICT_AUTO: int
  70. DTREES_PREDICT_AUTO: int
  71. DTrees_PREDICT_SUM: int
  72. DTREES_PREDICT_SUM: int
  73. DTrees_PREDICT_MAX_VOTE: int
  74. DTREES_PREDICT_MAX_VOTE: int
  75. DTrees_PREDICT_MASK: int
  76. DTREES_PREDICT_MASK: int
  77. DTrees_Flags = int
  78. """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
  79. Boost_DISCRETE: int
  80. BOOST_DISCRETE: int
  81. Boost_REAL: int
  82. BOOST_REAL: int
  83. Boost_LOGIT: int
  84. BOOST_LOGIT: int
  85. Boost_GENTLE: int
  86. BOOST_GENTLE: int
  87. Boost_Types = int
  88. """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
  89. ANN_MLP_BACKPROP: int
  90. ANN_MLP_RPROP: int
  91. ANN_MLP_ANNEAL: int
  92. ANN_MLP_TrainingMethods = int
  93. """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
  94. ANN_MLP_IDENTITY: int
  95. ANN_MLP_SIGMOID_SYM: int
  96. ANN_MLP_GAUSSIAN: int
  97. ANN_MLP_RELU: int
  98. ANN_MLP_LEAKYRELU: int
  99. ANN_MLP_ActivationFunctions = int
  100. """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
  101. ANN_MLP_UPDATE_WEIGHTS: int
  102. ANN_MLP_NO_INPUT_SCALE: int
  103. ANN_MLP_NO_OUTPUT_SCALE: int
  104. ANN_MLP_TrainFlags = int
  105. """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
  106. LogisticRegression_REG_DISABLE: int
  107. LOGISTIC_REGRESSION_REG_DISABLE: int
  108. LogisticRegression_REG_L1: int
  109. LOGISTIC_REGRESSION_REG_L1: int
  110. LogisticRegression_REG_L2: int
  111. LOGISTIC_REGRESSION_REG_L2: int
  112. LogisticRegression_RegKinds = int
  113. """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
  114. LogisticRegression_BATCH: int
  115. LOGISTIC_REGRESSION_BATCH: int
  116. LogisticRegression_MINI_BATCH: int
  117. LOGISTIC_REGRESSION_MINI_BATCH: int
  118. LogisticRegression_Methods = int
  119. """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
  120. SVMSGD_SGD: int
  121. SVMSGD_ASGD: int
  122. SVMSGD_SvmsgdType = int
  123. """One of [SVMSGD_SGD, SVMSGD_ASGD]"""
  124. SVMSGD_SOFT_MARGIN: int
  125. SVMSGD_HARD_MARGIN: int
  126. SVMSGD_MarginType = int
  127. """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
  128. # Classes
  129. class ParamGrid:
  130. minVal: float
  131. maxVal: float
  132. logStep: float
  133. # Functions
  134. @classmethod
  135. def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
  136. class TrainData:
  137. # Functions
  138. def getLayout(self) -> int: ...
  139. def getNTrainSamples(self) -> int: ...
  140. def getNTestSamples(self) -> int: ...
  141. def getNSamples(self) -> int: ...
  142. def getNVars(self) -> int: ...
  143. def getNAllVars(self) -> int: ...
  144. @typing.overload
  145. def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
  146. @typing.overload
  147. def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
  148. def getSamples(self) -> cv2.typing.MatLike: ...
  149. def getMissing(self) -> cv2.typing.MatLike: ...
  150. def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
  151. def getTrainResponses(self) -> cv2.typing.MatLike: ...
  152. def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
  153. def getTestResponses(self) -> cv2.typing.MatLike: ...
  154. def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
  155. def getResponses(self) -> cv2.typing.MatLike: ...
  156. def getNormCatResponses(self) -> cv2.typing.MatLike: ...
  157. def getSampleWeights(self) -> cv2.typing.MatLike: ...
  158. def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
  159. def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
  160. def getVarIdx(self) -> cv2.typing.MatLike: ...
  161. def getVarType(self) -> cv2.typing.MatLike: ...
  162. def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
  163. def getResponseType(self) -> int: ...
  164. def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
  165. def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
  166. @typing.overload
  167. def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
  168. @typing.overload
  169. def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
  170. def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
  171. def getCatCount(self, vi: int) -> int: ...
  172. def getClassLabels(self) -> cv2.typing.MatLike: ...
  173. def getCatOfs(self) -> cv2.typing.MatLike: ...
  174. def getCatMap(self) -> cv2.typing.MatLike: ...
  175. def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
  176. def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
  177. def shuffleTrainTest(self) -> None: ...
  178. def getTestSamples(self) -> cv2.typing.MatLike: ...
  179. def getNames(self, names: typing.Sequence[str]) -> None: ...
  180. @staticmethod
  181. def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
  182. @staticmethod
  183. def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
  184. @classmethod
  185. @typing.overload
  186. def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
  187. @classmethod
  188. @typing.overload
  189. def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
  190. class StatModel(cv2.Algorithm):
  191. # Functions
  192. def getVarCount(self) -> int: ...
  193. def empty(self) -> bool: ...
  194. def isTrained(self) -> bool: ...
  195. def isClassifier(self) -> bool: ...
  196. @typing.overload
  197. def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
  198. @typing.overload
  199. def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
  200. @typing.overload
  201. def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
  202. @typing.overload
  203. def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
  204. @typing.overload
  205. def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
  206. @typing.overload
  207. def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
  208. @typing.overload
  209. def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
  210. class NormalBayesClassifier(StatModel):
  211. # Functions
  212. @typing.overload
  213. def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  214. @typing.overload
  215. def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
  216. @classmethod
  217. def create(cls) -> NormalBayesClassifier: ...
  218. @classmethod
  219. def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
  220. class KNearest(StatModel):
  221. # Functions
  222. def getDefaultK(self) -> int: ...
  223. def setDefaultK(self, val: int) -> None: ...
  224. def getIsClassifier(self) -> bool: ...
  225. def setIsClassifier(self, val: bool) -> None: ...
  226. def getEmax(self) -> int: ...
  227. def setEmax(self, val: int) -> None: ...
  228. def getAlgorithmType(self) -> int: ...
  229. def setAlgorithmType(self, val: int) -> None: ...
  230. @typing.overload
  231. def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  232. @typing.overload
  233. def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
  234. @classmethod
  235. def create(cls) -> KNearest: ...
  236. @classmethod
  237. def load(cls, filepath: str) -> KNearest: ...
  238. class SVM(StatModel):
  239. # Functions
  240. def getType(self) -> int: ...
  241. def setType(self, val: int) -> None: ...
  242. def getGamma(self) -> float: ...
  243. def setGamma(self, val: float) -> None: ...
  244. def getCoef0(self) -> float: ...
  245. def setCoef0(self, val: float) -> None: ...
  246. def getDegree(self) -> float: ...
  247. def setDegree(self, val: float) -> None: ...
  248. def getC(self) -> float: ...
  249. def setC(self, val: float) -> None: ...
  250. def getNu(self) -> float: ...
  251. def setNu(self, val: float) -> None: ...
  252. def getP(self) -> float: ...
  253. def setP(self, val: float) -> None: ...
  254. def getClassWeights(self) -> cv2.typing.MatLike: ...
  255. def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
  256. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  257. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  258. def getKernelType(self) -> int: ...
  259. def setKernel(self, kernelType: int) -> None: ...
  260. @typing.overload
  261. def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
  262. @typing.overload
  263. def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
  264. def getSupportVectors(self) -> cv2.typing.MatLike: ...
  265. def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
  266. @typing.overload
  267. def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  268. @typing.overload
  269. def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
  270. @staticmethod
  271. def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
  272. @classmethod
  273. def create(cls) -> SVM: ...
  274. @classmethod
  275. def load(cls, filepath: str) -> SVM: ...
  276. class EM(StatModel):
  277. # Functions
  278. def getClustersNumber(self) -> int: ...
  279. def setClustersNumber(self, val: int) -> None: ...
  280. def getCovarianceMatrixType(self) -> int: ...
  281. def setCovarianceMatrixType(self, val: int) -> None: ...
  282. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  283. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  284. def getWeights(self) -> cv2.typing.MatLike: ...
  285. def getMeans(self) -> cv2.typing.MatLike: ...
  286. def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
  287. @typing.overload
  288. def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
  289. @typing.overload
  290. def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
  291. @typing.overload
  292. def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
  293. @typing.overload
  294. def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
  295. @typing.overload
  296. def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  297. @typing.overload
  298. def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
  299. @typing.overload
  300. def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  301. @typing.overload
  302. def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
  303. @typing.overload
  304. def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
  305. @typing.overload
  306. def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
  307. @classmethod
  308. def create(cls) -> EM: ...
  309. @classmethod
  310. def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
  311. class DTrees(StatModel):
  312. # Functions
  313. def getMaxCategories(self) -> int: ...
  314. def setMaxCategories(self, val: int) -> None: ...
  315. def getMaxDepth(self) -> int: ...
  316. def setMaxDepth(self, val: int) -> None: ...
  317. def getMinSampleCount(self) -> int: ...
  318. def setMinSampleCount(self, val: int) -> None: ...
  319. def getCVFolds(self) -> int: ...
  320. def setCVFolds(self, val: int) -> None: ...
  321. def getUseSurrogates(self) -> bool: ...
  322. def setUseSurrogates(self, val: bool) -> None: ...
  323. def getUse1SERule(self) -> bool: ...
  324. def setUse1SERule(self, val: bool) -> None: ...
  325. def getTruncatePrunedTree(self) -> bool: ...
  326. def setTruncatePrunedTree(self, val: bool) -> None: ...
  327. def getRegressionAccuracy(self) -> float: ...
  328. def setRegressionAccuracy(self, val: float) -> None: ...
  329. def getPriors(self) -> cv2.typing.MatLike: ...
  330. def setPriors(self, val: cv2.typing.MatLike) -> None: ...
  331. @classmethod
  332. def create(cls) -> DTrees: ...
  333. @classmethod
  334. def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
  335. class ANN_MLP(StatModel):
  336. # Functions
  337. def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
  338. def getTrainMethod(self) -> int: ...
  339. def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
  340. @typing.overload
  341. def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
  342. @typing.overload
  343. def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
  344. def getLayerSizes(self) -> cv2.typing.MatLike: ...
  345. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  346. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  347. def getBackpropWeightScale(self) -> float: ...
  348. def setBackpropWeightScale(self, val: float) -> None: ...
  349. def getBackpropMomentumScale(self) -> float: ...
  350. def setBackpropMomentumScale(self, val: float) -> None: ...
  351. def getRpropDW0(self) -> float: ...
  352. def setRpropDW0(self, val: float) -> None: ...
  353. def getRpropDWPlus(self) -> float: ...
  354. def setRpropDWPlus(self, val: float) -> None: ...
  355. def getRpropDWMinus(self) -> float: ...
  356. def setRpropDWMinus(self, val: float) -> None: ...
  357. def getRpropDWMin(self) -> float: ...
  358. def setRpropDWMin(self, val: float) -> None: ...
  359. def getRpropDWMax(self) -> float: ...
  360. def setRpropDWMax(self, val: float) -> None: ...
  361. def getAnnealInitialT(self) -> float: ...
  362. def setAnnealInitialT(self, val: float) -> None: ...
  363. def getAnnealFinalT(self) -> float: ...
  364. def setAnnealFinalT(self, val: float) -> None: ...
  365. def getAnnealCoolingRatio(self) -> float: ...
  366. def setAnnealCoolingRatio(self, val: float) -> None: ...
  367. def getAnnealItePerStep(self) -> int: ...
  368. def setAnnealItePerStep(self, val: int) -> None: ...
  369. def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
  370. @classmethod
  371. def create(cls) -> ANN_MLP: ...
  372. @classmethod
  373. def load(cls, filepath: str) -> ANN_MLP: ...
  374. class LogisticRegression(StatModel):
  375. # Functions
  376. def getLearningRate(self) -> float: ...
  377. def setLearningRate(self, val: float) -> None: ...
  378. def getIterations(self) -> int: ...
  379. def setIterations(self, val: int) -> None: ...
  380. def getRegularization(self) -> int: ...
  381. def setRegularization(self, val: int) -> None: ...
  382. def getTrainMethod(self) -> int: ...
  383. def setTrainMethod(self, val: int) -> None: ...
  384. def getMiniBatchSize(self) -> int: ...
  385. def setMiniBatchSize(self, val: int) -> None: ...
  386. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  387. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  388. @typing.overload
  389. def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
  390. @typing.overload
  391. def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
  392. def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
  393. @classmethod
  394. def create(cls) -> LogisticRegression: ...
  395. @classmethod
  396. def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
  397. class SVMSGD(StatModel):
  398. # Functions
  399. def getWeights(self) -> cv2.typing.MatLike: ...
  400. def getShift(self) -> float: ...
  401. @classmethod
  402. def create(cls) -> SVMSGD: ...
  403. @classmethod
  404. def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
  405. def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
  406. def getSvmsgdType(self) -> int: ...
  407. def setSvmsgdType(self, svmsgdType: int) -> None: ...
  408. def getMarginType(self) -> int: ...
  409. def setMarginType(self, marginType: int) -> None: ...
  410. def getMarginRegularization(self) -> float: ...
  411. def setMarginRegularization(self, marginRegularization: float) -> None: ...
  412. def getInitialStepSize(self) -> float: ...
  413. def setInitialStepSize(self, InitialStepSize: float) -> None: ...
  414. def getStepDecreasingPower(self) -> float: ...
  415. def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
  416. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  417. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  418. class RTrees(DTrees):
  419. # Functions
  420. def getCalculateVarImportance(self) -> bool: ...
  421. def setCalculateVarImportance(self, val: bool) -> None: ...
  422. def getActiveVarCount(self) -> int: ...
  423. def setActiveVarCount(self, val: int) -> None: ...
  424. def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
  425. def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
  426. def getVarImportance(self) -> cv2.typing.MatLike: ...
  427. @typing.overload
  428. def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
  429. @typing.overload
  430. def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
  431. def getOOBError(self) -> float: ...
  432. @classmethod
  433. def create(cls) -> RTrees: ...
  434. @classmethod
  435. def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
  436. class Boost(DTrees):
  437. # Functions
  438. def getBoostType(self) -> int: ...
  439. def setBoostType(self, val: int) -> None: ...
  440. def getWeakCount(self) -> int: ...
  441. def setWeakCount(self, val: int) -> None: ...
  442. def getWeightTrimRate(self) -> float: ...
  443. def setWeightTrimRate(self, val: float) -> None: ...
  444. @classmethod
  445. def create(cls) -> Boost: ...
  446. @classmethod
  447. def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...