123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 |
- import cv2
- import cv2.typing
- import typing
- # Enumerations
- VAR_NUMERICAL: int
- VAR_ORDERED: int
- VAR_CATEGORICAL: int
- VariableTypes = int
- """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
- TEST_ERROR: int
- TRAIN_ERROR: int
- ErrorTypes = int
- """One of [TEST_ERROR, TRAIN_ERROR]"""
- ROW_SAMPLE: int
- COL_SAMPLE: int
- SampleTypes = int
- """One of [ROW_SAMPLE, COL_SAMPLE]"""
- StatModel_UPDATE_MODEL: int
- STAT_MODEL_UPDATE_MODEL: int
- StatModel_RAW_OUTPUT: int
- STAT_MODEL_RAW_OUTPUT: int
- StatModel_COMPRESSED_INPUT: int
- STAT_MODEL_COMPRESSED_INPUT: int
- StatModel_PREPROCESSED_INPUT: int
- STAT_MODEL_PREPROCESSED_INPUT: int
- StatModel_Flags = int
- """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
- KNearest_BRUTE_FORCE: int
- KNEAREST_BRUTE_FORCE: int
- KNearest_KDTREE: int
- KNEAREST_KDTREE: int
- KNearest_Types = int
- """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
- SVM_C_SVC: int
- SVM_NU_SVC: int
- SVM_ONE_CLASS: int
- SVM_EPS_SVR: int
- SVM_NU_SVR: int
- SVM_Types = int
- """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
- SVM_CUSTOM: int
- SVM_LINEAR: int
- SVM_POLY: int
- SVM_RBF: int
- SVM_SIGMOID: int
- SVM_CHI2: int
- SVM_INTER: int
- SVM_KernelTypes = int
- """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
- SVM_C: int
- SVM_GAMMA: int
- SVM_P: int
- SVM_NU: int
- SVM_COEF: int
- SVM_DEGREE: int
- SVM_ParamTypes = int
- """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
- EM_COV_MAT_SPHERICAL: int
- EM_COV_MAT_DIAGONAL: int
- EM_COV_MAT_GENERIC: int
- EM_COV_MAT_DEFAULT: int
- EM_Types = int
- """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
- EM_DEFAULT_NCLUSTERS: int
- EM_DEFAULT_MAX_ITERS: int
- EM_START_E_STEP: int
- EM_START_M_STEP: int
- EM_START_AUTO_STEP: int
- DTrees_PREDICT_AUTO: int
- DTREES_PREDICT_AUTO: int
- DTrees_PREDICT_SUM: int
- DTREES_PREDICT_SUM: int
- DTrees_PREDICT_MAX_VOTE: int
- DTREES_PREDICT_MAX_VOTE: int
- DTrees_PREDICT_MASK: int
- DTREES_PREDICT_MASK: int
- DTrees_Flags = int
- """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
- Boost_DISCRETE: int
- BOOST_DISCRETE: int
- Boost_REAL: int
- BOOST_REAL: int
- Boost_LOGIT: int
- BOOST_LOGIT: int
- Boost_GENTLE: int
- BOOST_GENTLE: int
- Boost_Types = int
- """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
- ANN_MLP_BACKPROP: int
- ANN_MLP_RPROP: int
- ANN_MLP_ANNEAL: int
- ANN_MLP_TrainingMethods = int
- """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
- ANN_MLP_IDENTITY: int
- ANN_MLP_SIGMOID_SYM: int
- ANN_MLP_GAUSSIAN: int
- ANN_MLP_RELU: int
- ANN_MLP_LEAKYRELU: int
- ANN_MLP_ActivationFunctions = int
- """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
- ANN_MLP_UPDATE_WEIGHTS: int
- ANN_MLP_NO_INPUT_SCALE: int
- ANN_MLP_NO_OUTPUT_SCALE: int
- ANN_MLP_TrainFlags = int
- """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
- LogisticRegression_REG_DISABLE: int
- LOGISTIC_REGRESSION_REG_DISABLE: int
- LogisticRegression_REG_L1: int
- LOGISTIC_REGRESSION_REG_L1: int
- LogisticRegression_REG_L2: int
- LOGISTIC_REGRESSION_REG_L2: int
- LogisticRegression_RegKinds = int
- """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
- LogisticRegression_BATCH: int
- LOGISTIC_REGRESSION_BATCH: int
- LogisticRegression_MINI_BATCH: int
- LOGISTIC_REGRESSION_MINI_BATCH: int
- LogisticRegression_Methods = int
- """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
- SVMSGD_SGD: int
- SVMSGD_ASGD: int
- SVMSGD_SvmsgdType = int
- """One of [SVMSGD_SGD, SVMSGD_ASGD]"""
- SVMSGD_SOFT_MARGIN: int
- SVMSGD_HARD_MARGIN: int
- SVMSGD_MarginType = int
- """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
- # Classes
- class ParamGrid:
- minVal: float
- maxVal: float
- logStep: float
- # Functions
- @classmethod
- def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
- class TrainData:
- # Functions
- def getLayout(self) -> int: ...
- def getNTrainSamples(self) -> int: ...
- def getNTestSamples(self) -> int: ...
- def getNSamples(self) -> int: ...
- def getNVars(self) -> int: ...
- def getNAllVars(self) -> int: ...
- @typing.overload
- def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
- @typing.overload
- def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
- def getSamples(self) -> cv2.typing.MatLike: ...
- def getMissing(self) -> cv2.typing.MatLike: ...
- def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
- def getTrainResponses(self) -> cv2.typing.MatLike: ...
- def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
- def getTestResponses(self) -> cv2.typing.MatLike: ...
- def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
- def getResponses(self) -> cv2.typing.MatLike: ...
- def getNormCatResponses(self) -> cv2.typing.MatLike: ...
- def getSampleWeights(self) -> cv2.typing.MatLike: ...
- def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
- def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
- def getVarIdx(self) -> cv2.typing.MatLike: ...
- def getVarType(self) -> cv2.typing.MatLike: ...
- def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
- def getResponseType(self) -> int: ...
- def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
- def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
- @typing.overload
- def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
- @typing.overload
- def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
- def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
- def getCatCount(self, vi: int) -> int: ...
- def getClassLabels(self) -> cv2.typing.MatLike: ...
- def getCatOfs(self) -> cv2.typing.MatLike: ...
- def getCatMap(self) -> cv2.typing.MatLike: ...
- def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
- def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
- def shuffleTrainTest(self) -> None: ...
- def getTestSamples(self) -> cv2.typing.MatLike: ...
- def getNames(self, names: typing.Sequence[str]) -> None: ...
- @staticmethod
- def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
- @staticmethod
- def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
- @classmethod
- @typing.overload
- def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
- @classmethod
- @typing.overload
- def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
- class StatModel(cv2.Algorithm):
- # Functions
- def getVarCount(self) -> int: ...
- def empty(self) -> bool: ...
- def isTrained(self) -> bool: ...
- def isClassifier(self) -> bool: ...
- @typing.overload
- def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
- @typing.overload
- def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
- @typing.overload
- def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
- @typing.overload
- def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
- @typing.overload
- def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
- @typing.overload
- def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
- @typing.overload
- def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
- class NormalBayesClassifier(StatModel):
- # Functions
- @typing.overload
- def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
- @classmethod
- def create(cls) -> NormalBayesClassifier: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
- class KNearest(StatModel):
- # Functions
- def getDefaultK(self) -> int: ...
- def setDefaultK(self, val: int) -> None: ...
- def getIsClassifier(self) -> bool: ...
- def setIsClassifier(self, val: bool) -> None: ...
- def getEmax(self) -> int: ...
- def setEmax(self, val: int) -> None: ...
- def getAlgorithmType(self) -> int: ...
- def setAlgorithmType(self, val: int) -> None: ...
- @typing.overload
- def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @classmethod
- def create(cls) -> KNearest: ...
- @classmethod
- def load(cls, filepath: str) -> KNearest: ...
- class SVM(StatModel):
- # Functions
- def getType(self) -> int: ...
- def setType(self, val: int) -> None: ...
- def getGamma(self) -> float: ...
- def setGamma(self, val: float) -> None: ...
- def getCoef0(self) -> float: ...
- def setCoef0(self, val: float) -> None: ...
- def getDegree(self) -> float: ...
- def setDegree(self, val: float) -> None: ...
- def getC(self) -> float: ...
- def setC(self, val: float) -> None: ...
- def getNu(self) -> float: ...
- def setNu(self, val: float) -> None: ...
- def getP(self) -> float: ...
- def setP(self, val: float) -> None: ...
- def getClassWeights(self) -> cv2.typing.MatLike: ...
- def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- def getKernelType(self) -> int: ...
- def setKernel(self, kernelType: int) -> None: ...
- @typing.overload
- def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
- @typing.overload
- def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
- def getSupportVectors(self) -> cv2.typing.MatLike: ...
- def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
- @typing.overload
- def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
- @staticmethod
- def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
- @classmethod
- def create(cls) -> SVM: ...
- @classmethod
- def load(cls, filepath: str) -> SVM: ...
- class EM(StatModel):
- # Functions
- def getClustersNumber(self) -> int: ...
- def setClustersNumber(self, val: int) -> None: ...
- def getCovarianceMatrixType(self) -> int: ...
- def setCovarianceMatrixType(self, val: int) -> None: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- def getWeights(self) -> cv2.typing.MatLike: ...
- def getMeans(self) -> cv2.typing.MatLike: ...
- def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
- @typing.overload
- def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
- @typing.overload
- def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
- @typing.overload
- def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
- @typing.overload
- def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
- @typing.overload
- def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @classmethod
- def create(cls) -> EM: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
- class DTrees(StatModel):
- # Functions
- def getMaxCategories(self) -> int: ...
- def setMaxCategories(self, val: int) -> None: ...
- def getMaxDepth(self) -> int: ...
- def setMaxDepth(self, val: int) -> None: ...
- def getMinSampleCount(self) -> int: ...
- def setMinSampleCount(self, val: int) -> None: ...
- def getCVFolds(self) -> int: ...
- def setCVFolds(self, val: int) -> None: ...
- def getUseSurrogates(self) -> bool: ...
- def setUseSurrogates(self, val: bool) -> None: ...
- def getUse1SERule(self) -> bool: ...
- def setUse1SERule(self, val: bool) -> None: ...
- def getTruncatePrunedTree(self) -> bool: ...
- def setTruncatePrunedTree(self, val: bool) -> None: ...
- def getRegressionAccuracy(self) -> float: ...
- def setRegressionAccuracy(self, val: float) -> None: ...
- def getPriors(self) -> cv2.typing.MatLike: ...
- def setPriors(self, val: cv2.typing.MatLike) -> None: ...
- @classmethod
- def create(cls) -> DTrees: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
- class ANN_MLP(StatModel):
- # Functions
- def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
- def getTrainMethod(self) -> int: ...
- def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
- @typing.overload
- def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
- @typing.overload
- def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
- def getLayerSizes(self) -> cv2.typing.MatLike: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- def getBackpropWeightScale(self) -> float: ...
- def setBackpropWeightScale(self, val: float) -> None: ...
- def getBackpropMomentumScale(self) -> float: ...
- def setBackpropMomentumScale(self, val: float) -> None: ...
- def getRpropDW0(self) -> float: ...
- def setRpropDW0(self, val: float) -> None: ...
- def getRpropDWPlus(self) -> float: ...
- def setRpropDWPlus(self, val: float) -> None: ...
- def getRpropDWMinus(self) -> float: ...
- def setRpropDWMinus(self, val: float) -> None: ...
- def getRpropDWMin(self) -> float: ...
- def setRpropDWMin(self, val: float) -> None: ...
- def getRpropDWMax(self) -> float: ...
- def setRpropDWMax(self, val: float) -> None: ...
- def getAnnealInitialT(self) -> float: ...
- def setAnnealInitialT(self, val: float) -> None: ...
- def getAnnealFinalT(self) -> float: ...
- def setAnnealFinalT(self, val: float) -> None: ...
- def getAnnealCoolingRatio(self) -> float: ...
- def setAnnealCoolingRatio(self, val: float) -> None: ...
- def getAnnealItePerStep(self) -> int: ...
- def setAnnealItePerStep(self, val: int) -> None: ...
- def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
- @classmethod
- def create(cls) -> ANN_MLP: ...
- @classmethod
- def load(cls, filepath: str) -> ANN_MLP: ...
- class LogisticRegression(StatModel):
- # Functions
- def getLearningRate(self) -> float: ...
- def setLearningRate(self, val: float) -> None: ...
- def getIterations(self) -> int: ...
- def setIterations(self, val: int) -> None: ...
- def getRegularization(self) -> int: ...
- def setRegularization(self, val: int) -> None: ...
- def getTrainMethod(self) -> int: ...
- def setTrainMethod(self, val: int) -> None: ...
- def getMiniBatchSize(self) -> int: ...
- def setMiniBatchSize(self, val: int) -> None: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- @typing.overload
- def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
- @typing.overload
- def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
- def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
- @classmethod
- def create(cls) -> LogisticRegression: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
- class SVMSGD(StatModel):
- # Functions
- def getWeights(self) -> cv2.typing.MatLike: ...
- def getShift(self) -> float: ...
- @classmethod
- def create(cls) -> SVMSGD: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
- def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
- def getSvmsgdType(self) -> int: ...
- def setSvmsgdType(self, svmsgdType: int) -> None: ...
- def getMarginType(self) -> int: ...
- def setMarginType(self, marginType: int) -> None: ...
- def getMarginRegularization(self) -> float: ...
- def setMarginRegularization(self, marginRegularization: float) -> None: ...
- def getInitialStepSize(self) -> float: ...
- def setInitialStepSize(self, InitialStepSize: float) -> None: ...
- def getStepDecreasingPower(self) -> float: ...
- def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- class RTrees(DTrees):
- # Functions
- def getCalculateVarImportance(self) -> bool: ...
- def setCalculateVarImportance(self, val: bool) -> None: ...
- def getActiveVarCount(self) -> int: ...
- def setActiveVarCount(self, val: int) -> None: ...
- def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
- def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
- def getVarImportance(self) -> cv2.typing.MatLike: ...
- @typing.overload
- def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
- @typing.overload
- def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
- def getOOBError(self) -> float: ...
- @classmethod
- def create(cls) -> RTrees: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
- class Boost(DTrees):
- # Functions
- def getBoostType(self) -> int: ...
- def setBoostType(self, val: int) -> None: ...
- def getWeakCount(self) -> int: ...
- def setWeakCount(self, val: int) -> None: ...
- def getWeightTrimRate(self) -> float: ...
- def setWeightTrimRate(self, val: float) -> None: ...
- @classmethod
- def create(cls) -> Boost: ...
- @classmethod
- def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
|