123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Model validation metrics
- """
- import math
- import warnings
- from pathlib import Path
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- from ultralytics.utils import LOGGER, SimpleClass, TryExcept, plt_settings
- OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
- def bbox_ioa(box1, box2, iou=False, eps=1e-7):
- """
- Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.
- Args:
- box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.
- box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.
- iou (bool): Calculate the standard iou if True else return inter_area/box2_area.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
- Returns:
- (np.array): A numpy array of shape (n, m) representing the intersection over box2 area.
- """
- # Get the coordinates of bounding boxes
- b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
- b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
- # Intersection area
- inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
- (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
- # box2 area
- area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
- if iou:
- box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
- area = area + box1_area[:, None] - inter_area
- # Intersection over box2 area
- return inter_area / (area + eps)
- def box_iou(box1, box2, eps=1e-7):
- """
- Calculate intersection-over-union (IoU) of boxes.
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
- Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
- Args:
- box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
- box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
- Returns:
- (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
- """
- # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
- (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
- inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
- # IoU = inter / (area1 + area2 - inter)
- return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
- def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
- """
- Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).
- Args:
- box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
- box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
- xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
- (x1, y1, x2, y2) format. Defaults to True.
- GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
- DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
- CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
- Returns:
- (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
- """
- # Get the coordinates of bounding boxes
- if xywh: # transform from xywh to xyxy
- (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
- w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
- b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
- b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
- else: # x1, y1, x2, y2 = box1
- b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
- b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
- # Intersection area
- inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
- (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)
- # Union Area
- union = w1 * h1 + w2 * h2 - inter + eps
- # IoU
- iou = inter / union
- if CIoU or DIoU or GIoU:
- cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
- ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
- c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
- rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
- if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
- v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
- with torch.no_grad():
- alpha = v / (v - iou + (1 + eps))
- return iou - (rho2 / c2 + v * alpha) # CIoU
- return iou - rho2 / c2 # DIoU
- c_area = cw * ch + eps # convex area
- return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
- return iou # IoU
- def mask_iou(mask1, mask2, eps=1e-7):
- """
- Calculate masks IoU.
- Args:
- mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
- product of image width and height.
- mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
- product of image width and height.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
- Returns:
- (torch.Tensor): A tensor of shape (N, M) representing masks IoU.
- """
- intersection = torch.matmul(mask1, mask2.T).clamp_(0)
- union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
- return intersection / (union + eps)
- def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
- """
- Calculate Object Keypoint Similarity (OKS).
- Args:
- kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
- kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
- area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
- sigma (list): A list containing 17 values representing keypoint scales.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
- Returns:
- (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
- """
- d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17)
- sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
- kpt_mask = kpt1[..., 2] != 0 # (N, 17)
- e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval
- # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
- return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
- # return positive, negative label smoothing BCE targets
- return 1.0 - 0.5 * eps, 0.5 * eps
- class ConfusionMatrix:
- """
- A class for calculating and updating a confusion matrix for object detection and classification tasks.
- Attributes:
- task (str): The type of task, either 'detect' or 'classify'.
- matrix (np.array): The confusion matrix, with dimensions depending on the task.
- nc (int): The number of classes.
- conf (float): The confidence threshold for detections.
- iou_thres (float): The Intersection over Union threshold.
- """
- def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
- """Initialize attributes for the YOLO model."""
- self.task = task
- self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
- self.nc = nc # number of classes
- self.conf = conf
- self.iou_thres = iou_thres
- def process_cls_preds(self, preds, targets):
- """
- Update confusion matrix for classification task
- Args:
- preds (Array[N, min(nc,5)]): Predicted class labels.
- targets (Array[N, 1]): Ground truth class labels.
- """
- preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
- for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
- self.matrix[p][t] += 1
- def process_batch(self, detections, labels):
- """
- Update confusion matrix for object detection task.
- Args:
- detections (Array[N, 6]): Detected bounding boxes and their associated information.
- Each row should contain (x1, y1, x2, y2, conf, class).
- labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels.
- Each row should contain (class, x1, y1, x2, y2).
- """
- if detections is None:
- gt_classes = labels.int()
- for gc in gt_classes:
- self.matrix[self.nc, gc] += 1 # background FN
- return
- detections = detections[detections[:, 4] > self.conf]
- gt_classes = labels[:, 0].int()
- detection_classes = detections[:, 5].int()
- iou = box_iou(labels[:, 1:], detections[:, :4])
- x = torch.where(iou > self.iou_thres)
- if x[0].shape[0]:
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
- if x[0].shape[0] > 1:
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- else:
- matches = np.zeros((0, 3))
- n = matches.shape[0] > 0
- m0, m1, _ = matches.transpose().astype(int)
- for i, gc in enumerate(gt_classes):
- j = m0 == i
- if n and sum(j) == 1:
- self.matrix[detection_classes[m1[j]], gc] += 1 # correct
- else:
- self.matrix[self.nc, gc] += 1 # true background
- if n:
- for i, dc in enumerate(detection_classes):
- if not any(m1 == i):
- self.matrix[dc, self.nc] += 1 # predicted background
- def matrix(self):
- """Returns the confusion matrix."""
- return self.matrix
- def tp_fp(self):
- """Returns true positives and false positives."""
- tp = self.matrix.diagonal() # true positives
- fp = self.matrix.sum(1) - tp # false positives
- # fn = self.matrix.sum(0) - tp # false negatives (missed detections)
- return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
- @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
- @plt_settings()
- def plot(self, normalize=True, save_dir='', names=(), on_plot=None):
- """
- Plot the confusion matrix using seaborn and save it to a file.
- Args:
- normalize (bool): Whether to normalize the confusion matrix.
- save_dir (str): Directory where the plot will be saved.
- names (tuple): Names of classes, used as labels on the plot.
- on_plot (func): An optional callback to pass plots path and data when they are rendered.
- """
- import seaborn as sn
- array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
- array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
- fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
- nc, nn = self.nc, len(names) # number of classes, names
- sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
- labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
- ticklabels = (list(names) + ['background']) if labels else 'auto'
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
- sn.heatmap(array,
- ax=ax,
- annot=nc < 30,
- annot_kws={
- 'size': 8},
- cmap='Blues',
- fmt='.2f' if normalize else '.0f',
- square=True,
- vmin=0.0,
- xticklabels=ticklabels,
- yticklabels=ticklabels).set_facecolor((1, 1, 1))
- title = 'Confusion Matrix' + ' Normalized' * normalize
- ax.set_xlabel('True')
- ax.set_ylabel('Predicted')
- ax.set_title(title)
- plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
- fig.savefig(plot_fname, dpi=250)
- plt.close(fig)
- if on_plot:
- on_plot(plot_fname)
- def print(self):
- """
- Print the confusion matrix to the console.
- """
- for i in range(self.nc + 1):
- LOGGER.info(' '.join(map(str, self.matrix[i])))
- def smooth(y, f=0.05):
- """Box filter of fraction f."""
- nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
- p = np.ones(nf // 2) # ones padding
- yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
- return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
- @plt_settings()
- def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None):
- """Plots a precision-recall curve."""
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
- py = np.stack(py, axis=1)
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py.T):
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
- else:
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
- ax.set_xlabel('Recall')
- ax.set_ylabel('Precision')
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
- ax.set_title('Precision-Recall Curve')
- fig.savefig(save_dir, dpi=250)
- plt.close(fig)
- if on_plot:
- on_plot(save_dir)
- @plt_settings()
- def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None):
- """Plots a metric-confidence curve."""
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py):
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
- else:
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
- y = smooth(py.mean(0), 0.05)
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
- ax.set_title(f'{ylabel}-Confidence Curve')
- fig.savefig(save_dir, dpi=250)
- plt.close(fig)
- if on_plot:
- on_plot(save_dir)
- def compute_ap(recall, precision):
- """
- Compute the average precision (AP) given the recall and precision curves.
- Args:
- recall (list): The recall curve.
- precision (list): The precision curve.
- Returns:
- (float): Average precision.
- (np.ndarray): Precision envelope curve.
- (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
- """
- # Append sentinel values to beginning and end
- mrec = np.concatenate(([0.0], recall, [1.0]))
- mpre = np.concatenate(([1.0], precision, [0.0]))
- # Compute the precision envelope
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
- # Integrate area under curve
- method = 'interp' # methods: 'continuous', 'interp'
- if method == 'interp':
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
- else: # 'continuous'
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
- return ap, mpre, mrec
- def ap_per_class(tp,
- conf,
- pred_cls,
- target_cls,
- plot=False,
- on_plot=None,
- save_dir=Path(),
- names=(),
- eps=1e-16,
- prefix=''):
- """
- Computes the average precision per class for object detection evaluation.
- Args:
- tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
- conf (np.ndarray): Array of confidence scores of the detections.
- pred_cls (np.ndarray): Array of predicted classes of the detections.
- target_cls (np.ndarray): Array of true classes of the detections.
- plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
- on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.
- save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
- names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
- eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
- prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
- Returns:
- (tuple): A tuple of six arrays and one array of unique classes, where:
- tp (np.ndarray): True positive counts for each class.
- fp (np.ndarray): False positive counts for each class.
- p (np.ndarray): Precision values at each confidence threshold.
- r (np.ndarray): Recall values at each confidence threshold.
- f1 (np.ndarray): F1-score values at each confidence threshold.
- ap (np.ndarray): Average precision for each class at different IoU thresholds.
- unique_classes (np.ndarray): An array of unique classes that have data.
- """
- # Sort by objectness
- i = np.argsort(-conf)
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
- # Find unique classes
- unique_classes, nt = np.unique(target_cls, return_counts=True)
- nc = unique_classes.shape[0] # number of classes, number of detections
- # Create Precision-Recall curve and compute AP for each class
- px, py = np.linspace(0, 1, 1000), [] # for plotting
- ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
- for ci, c in enumerate(unique_classes):
- i = pred_cls == c
- n_l = nt[ci] # number of labels
- n_p = i.sum() # number of predictions
- if n_p == 0 or n_l == 0:
- continue
- # Accumulate FPs and TPs
- fpc = (1 - tp[i]).cumsum(0)
- tpc = tp[i].cumsum(0)
- # Recall
- recall = tpc / (n_l + eps) # recall curve
- r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
- # Precision
- precision = tpc / (tpc + fpc) # precision curve
- p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
- # AP from recall-precision curve
- for j in range(tp.shape[1]):
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
- if plot and j == 0:
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
- # Compute F1 (harmonic mean of precision and recall)
- f1 = 2 * p * r / (p + r + eps)
- names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
- names = dict(enumerate(names)) # to dict
- if plot:
- plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names, on_plot=on_plot)
- plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1', on_plot=on_plot)
- plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision', on_plot=on_plot)
- plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall', on_plot=on_plot)
- i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
- p, r, f1 = p[:, i], r[:, i], f1[:, i]
- tp = (r * nt).round() # true positives
- fp = (tp / (p + eps) - tp).round() # false positives
- return tp, fp, p, r, f1, ap, unique_classes.astype(int)
- class Metric(SimpleClass):
- """
- Class for computing evaluation metrics for YOLOv8 model.
- Attributes:
- p (list): Precision for each class. Shape: (nc,).
- r (list): Recall for each class. Shape: (nc,).
- f1 (list): F1 score for each class. Shape: (nc,).
- all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
- ap_class_index (list): Index of class for each AP score. Shape: (nc,).
- nc (int): Number of classes.
- Methods:
- ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
- ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
- mp(): Mean precision of all classes. Returns: Float.
- mr(): Mean recall of all classes. Returns: Float.
- map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
- map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
- map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
- mean_results(): Mean of results, returns mp, mr, map50, map.
- class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
- maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
- fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
- update(results): Update metric attributes with new evaluation results.
- """
- def __init__(self) -> None:
- self.p = [] # (nc, )
- self.r = [] # (nc, )
- self.f1 = [] # (nc, )
- self.all_ap = [] # (nc, 10)
- self.ap_class_index = [] # (nc, )
- self.nc = 0
- @property
- def ap50(self):
- """
- Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
- Returns:
- (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
- """
- return self.all_ap[:, 0] if len(self.all_ap) else []
- @property
- def ap(self):
- """
- Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
- Returns:
- (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
- """
- return self.all_ap.mean(1) if len(self.all_ap) else []
- @property
- def mp(self):
- """
- Returns the Mean Precision of all classes.
- Returns:
- (float): The mean precision of all classes.
- """
- return self.p.mean() if len(self.p) else 0.0
- @property
- def mr(self):
- """
- Returns the Mean Recall of all classes.
- Returns:
- (float): The mean recall of all classes.
- """
- return self.r.mean() if len(self.r) else 0.0
- @property
- def map50(self):
- """
- Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.
- Returns:
- (float): The mAP50 at an IoU threshold of 0.5.
- """
- return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
- @property
- def map75(self):
- """
- Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.
- Returns:
- (float): The mAP50 at an IoU threshold of 0.75.
- """
- return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
- @property
- def map(self):
- """
- Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
- Returns:
- (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
- """
- return self.all_ap.mean() if len(self.all_ap) else 0.0
- def mean_results(self):
- """Mean of results, return mp, mr, map50, map."""
- return [self.mp, self.mr, self.map50, self.map]
- def class_result(self, i):
- """class-aware result, return p[i], r[i], ap50[i], ap[i]."""
- return self.p[i], self.r[i], self.ap50[i], self.ap[i]
- @property
- def maps(self):
- """mAP of each class."""
- maps = np.zeros(self.nc) + self.map
- for i, c in enumerate(self.ap_class_index):
- maps[c] = self.ap[i]
- return maps
- def fitness(self):
- """Model fitness as a weighted combination of metrics."""
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
- return (np.array(self.mean_results()) * w).sum()
- def update(self, results):
- """
- Args:
- results (tuple): A tuple of (p, r, ap, f1, ap_class)
- """
- self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results
- class DetMetrics(SimpleClass):
- """
- This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
- (mAP) of an object detection model.
- Args:
- save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
- plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
- on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
- names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
- Attributes:
- save_dir (Path): A path to the directory where the output plots will be saved.
- plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
- on_plot (func): An optional callback to pass plots path and data when they are rendered.
- names (tuple of str): A tuple of strings that represents the names of the classes.
- box (Metric): An instance of the Metric class for storing the results of the detection metrics.
- speed (dict): A dictionary for storing the execution time of different parts of the detection process.
- Methods:
- process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
- keys: Returns a list of keys for accessing the computed detection metrics.
- mean_results: Returns a list of mean values for the computed detection metrics.
- class_result(i): Returns a list of values for the computed detection metrics for a specific class.
- maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
- fitness: Computes the fitness score based on the computed detection metrics.
- ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
- results_dict: Returns a dictionary that maps detection metric keys to their computed values.
- """
- def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
- self.save_dir = save_dir
- self.plot = plot
- self.on_plot = on_plot
- self.names = names
- self.box = Metric()
- self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
- def process(self, tp, conf, pred_cls, target_cls):
- """Process predicted results for object detection and update metrics."""
- results = ap_per_class(tp,
- conf,
- pred_cls,
- target_cls,
- plot=self.plot,
- save_dir=self.save_dir,
- names=self.names,
- on_plot=self.on_plot)[2:]
- self.box.nc = len(self.names)
- self.box.update(results)
- @property
- def keys(self):
- """Returns a list of keys for accessing specific metrics."""
- return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
- def mean_results(self):
- """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
- return self.box.mean_results()
- def class_result(self, i):
- """Return the result of evaluating the performance of an object detection model on a specific class."""
- return self.box.class_result(i)
- @property
- def maps(self):
- """Returns mean Average Precision (mAP) scores per class."""
- return self.box.maps
- @property
- def fitness(self):
- """Returns the fitness of box object."""
- return self.box.fitness()
- @property
- def ap_class_index(self):
- """Returns the average precision index per class."""
- return self.box.ap_class_index
- @property
- def results_dict(self):
- """Returns dictionary of computed performance metrics and statistics."""
- return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
- class SegmentMetrics(SimpleClass):
- """
- Calculates and aggregates detection and segmentation metrics over a given set of classes.
- Args:
- save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
- plot (bool): Whether to save the detection and segmentation plots. Default is False.
- on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
- names (list): List of class names. Default is an empty list.
- Attributes:
- save_dir (Path): Path to the directory where the output plots should be saved.
- plot (bool): Whether to save the detection and segmentation plots.
- on_plot (func): An optional callback to pass plots path and data when they are rendered.
- names (list): List of class names.
- box (Metric): An instance of the Metric class to calculate box detection metrics.
- seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
- speed (dict): Dictionary to store the time taken in different phases of inference.
- Methods:
- process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
- mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
- class_result(i): Returns the detection and segmentation metrics of class `i`.
- maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
- fitness: Returns the fitness scores, which are a single weighted combination of metrics.
- ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
- results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
- """
- def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
- self.save_dir = save_dir
- self.plot = plot
- self.on_plot = on_plot
- self.names = names
- self.box = Metric()
- self.seg = Metric()
- self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
- def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
- """
- Processes the detection and segmentation metrics over the given set of predictions.
- Args:
- tp_b (list): List of True Positive boxes.
- tp_m (list): List of True Positive masks.
- conf (list): List of confidence scores.
- pred_cls (list): List of predicted classes.
- target_cls (list): List of target classes.
- """
- results_mask = ap_per_class(tp_m,
- conf,
- pred_cls,
- target_cls,
- plot=self.plot,
- on_plot=self.on_plot,
- save_dir=self.save_dir,
- names=self.names,
- prefix='Mask')[2:]
- self.seg.nc = len(self.names)
- self.seg.update(results_mask)
- results_box = ap_per_class(tp_b,
- conf,
- pred_cls,
- target_cls,
- plot=self.plot,
- on_plot=self.on_plot,
- save_dir=self.save_dir,
- names=self.names,
- prefix='Box')[2:]
- self.box.nc = len(self.names)
- self.box.update(results_box)
- @property
- def keys(self):
- """Returns a list of keys for accessing metrics."""
- return [
- 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
- 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']
- def mean_results(self):
- """Return the mean metrics for bounding box and segmentation results."""
- return self.box.mean_results() + self.seg.mean_results()
- def class_result(self, i):
- """Returns classification results for a specified class index."""
- return self.box.class_result(i) + self.seg.class_result(i)
- @property
- def maps(self):
- """Returns mAP scores for object detection and semantic segmentation models."""
- return self.box.maps + self.seg.maps
- @property
- def fitness(self):
- """Get the fitness score for both segmentation and bounding box models."""
- return self.seg.fitness() + self.box.fitness()
- @property
- def ap_class_index(self):
- """Boxes and masks have the same ap_class_index."""
- return self.box.ap_class_index
- @property
- def results_dict(self):
- """Returns results of object detection model for evaluation."""
- return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
- class PoseMetrics(SegmentMetrics):
- """
- Calculates and aggregates detection and pose metrics over a given set of classes.
- Args:
- save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
- plot (bool): Whether to save the detection and segmentation plots. Default is False.
- on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
- names (list): List of class names. Default is an empty list.
- Attributes:
- save_dir (Path): Path to the directory where the output plots should be saved.
- plot (bool): Whether to save the detection and segmentation plots.
- on_plot (func): An optional callback to pass plots path and data when they are rendered.
- names (list): List of class names.
- box (Metric): An instance of the Metric class to calculate box detection metrics.
- pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
- speed (dict): Dictionary to store the time taken in different phases of inference.
- Methods:
- process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
- mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
- class_result(i): Returns the detection and segmentation metrics of class `i`.
- maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
- fitness: Returns the fitness scores, which are a single weighted combination of metrics.
- ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
- results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
- """
- def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
- super().__init__(save_dir, plot, names)
- self.save_dir = save_dir
- self.plot = plot
- self.on_plot = on_plot
- self.names = names
- self.box = Metric()
- self.pose = Metric()
- self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
- def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
- """
- Processes the detection and pose metrics over the given set of predictions.
- Args:
- tp_b (list): List of True Positive boxes.
- tp_p (list): List of True Positive keypoints.
- conf (list): List of confidence scores.
- pred_cls (list): List of predicted classes.
- target_cls (list): List of target classes.
- """
- results_pose = ap_per_class(tp_p,
- conf,
- pred_cls,
- target_cls,
- plot=self.plot,
- on_plot=self.on_plot,
- save_dir=self.save_dir,
- names=self.names,
- prefix='Pose')[2:]
- self.pose.nc = len(self.names)
- self.pose.update(results_pose)
- results_box = ap_per_class(tp_b,
- conf,
- pred_cls,
- target_cls,
- plot=self.plot,
- on_plot=self.on_plot,
- save_dir=self.save_dir,
- names=self.names,
- prefix='Box')[2:]
- self.box.nc = len(self.names)
- self.box.update(results_box)
- @property
- def keys(self):
- """Returns list of evaluation metric keys."""
- return [
- 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
- 'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']
- def mean_results(self):
- """Return the mean results of box and pose."""
- return self.box.mean_results() + self.pose.mean_results()
- def class_result(self, i):
- """Return the class-wise detection results for a specific class i."""
- return self.box.class_result(i) + self.pose.class_result(i)
- @property
- def maps(self):
- """Returns the mean average precision (mAP) per class for both box and pose detections."""
- return self.box.maps + self.pose.maps
- @property
- def fitness(self):
- """Computes classification metrics and speed using the `targets` and `pred` inputs."""
- return self.pose.fitness() + self.box.fitness()
- class ClassifyMetrics(SimpleClass):
- """
- Class for computing classification metrics including top-1 and top-5 accuracy.
- Attributes:
- top1 (float): The top-1 accuracy.
- top5 (float): The top-5 accuracy.
- speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
- Properties:
- fitness (float): The fitness of the model, which is equal to top-5 accuracy.
- results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
- keys (List[str]): A list of keys for the results_dict.
- Methods:
- process(targets, pred): Processes the targets and predictions to compute classification metrics.
- """
- def __init__(self) -> None:
- self.top1 = 0
- self.top5 = 0
- self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
- def process(self, targets, pred):
- """Target classes and predicted classes."""
- pred, targets = torch.cat(pred), torch.cat(targets)
- correct = (targets[:, None] == pred).float()
- acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
- self.top1, self.top5 = acc.mean(0).tolist()
- @property
- def fitness(self):
- """Returns mean of top-1 and top-5 accuracies as fitness score."""
- return (self.top1 + self.top5) / 2
- @property
- def results_dict(self):
- """Returns a dictionary with model's performance metrics and fitness score."""
- return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))
- @property
- def keys(self):
- """Returns a list of keys for the results_dict property."""
- return ['metrics/accuracy_top1', 'metrics/accuracy_top5']
|