1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import os
- import re
- from pathlib import Path
- from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr
- try:
- import mlflow
- assert not TESTS_RUNNING # do not log pytest
- assert hasattr(mlflow, '__version__') # verify package is not directory
- assert SETTINGS['mlflow'] is True # verify integration is enabled
- except (ImportError, AssertionError):
- mlflow = None
- def on_pretrain_routine_end(trainer):
- """Logs training parameters to MLflow."""
- global mlflow, run, experiment_name
- if os.environ.get('MLFLOW_TRACKING_URI') is None:
- mlflow = None
- if mlflow:
- mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000"
- mlflow.set_tracking_uri(mlflow_location)
- experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8'
- run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name
- experiment = mlflow.get_experiment_by_name(experiment_name)
- if experiment is None:
- mlflow.create_experiment(experiment_name)
- mlflow.set_experiment(experiment_name)
- prefix = colorstr('MLFlow: ')
- try:
- run, active_run = mlflow, mlflow.active_run()
- if not active_run:
- active_run = mlflow.start_run(experiment_id=experiment.experiment_id, run_name=run_name)
- LOGGER.info(f'{prefix}Using run_id({active_run.info.run_id}) at {mlflow_location}')
- run.log_params(vars(trainer.model.args))
- except Exception as err:
- LOGGER.error(f'{prefix}Failing init - {repr(err)}')
- LOGGER.warning(f'{prefix}Continuing without Mlflow')
- def on_fit_epoch_end(trainer):
- """Logs training metrics to Mlflow."""
- if mlflow:
- metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()}
- run.log_metrics(metrics=metrics_dict, step=trainer.epoch)
- def on_train_end(trainer):
- """Called at end of train loop to log model artifact info."""
- if mlflow:
- root_dir = Path(__file__).resolve().parents[3]
- run.log_artifact(trainer.last)
- run.log_artifact(trainer.best)
- run.pyfunc.log_model(artifact_path=experiment_name,
- code_path=[str(root_dir)],
- artifacts={'model_path': str(trainer.save_dir)},
- python_model=run.pyfunc.PythonModel())
- callbacks = {
- 'on_pretrain_routine_end': on_pretrain_routine_end,
- 'on_fit_epoch_end': on_fit_epoch_end,
- 'on_train_end': on_train_end} if mlflow else {}
|