123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import numpy as np
- from .basetrack import BaseTrack, TrackState
- from .utils import matching
- from .utils.kalman_filter import KalmanFilterXYAH
- class STrack(BaseTrack):
- shared_kalman = KalmanFilterXYAH()
- def __init__(self, tlwh, score, cls):
- """wait activate."""
- self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32)
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
- self.score = score
- self.tracklet_len = 0
- self.cls = cls
- self.idx = tlwh[-1]
- def predict(self):
- """Predicts mean and covariance using Kalman filter."""
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
- @staticmethod
- def multi_predict(stracks):
- """Perform multi-object predictive tracking using Kalman filter for given stracks."""
- if len(stracks) <= 0:
- return
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
- @staticmethod
- def multi_gmc(stracks, H=np.eye(2, 3)):
- """Update state tracks positions and covariances using a homography matrix."""
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- R = H[:2, :2]
- R8x8 = np.kron(np.eye(4, dtype=float), R)
- t = H[:2, 2]
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- mean = R8x8.dot(mean)
- mean[:2] += t
- cov = R8x8.dot(cov).dot(R8x8.transpose())
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def activate(self, kalman_filter, frame_id):
- """Start a new tracklet."""
- self.kalman_filter = kalman_filter
- self.track_id = self.next_id()
- self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- if frame_id == 1:
- self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- def re_activate(self, new_track, frame_id, new_id=False):
- """Reactivates a previously lost track with a new detection."""
- self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance,
- self.convert_coords(new_track.tlwh))
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id:
- self.track_id = self.next_id()
- self.score = new_track.score
- self.cls = new_track.cls
- self.idx = new_track.idx
- def update(self, new_track, frame_id):
- """
- Update a matched track
- :type new_track: STrack
- :type frame_id: int
- :return:
- """
- self.frame_id = frame_id
- self.tracklet_len += 1
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance,
- self.convert_coords(new_tlwh))
- self.state = TrackState.Tracked
- self.is_activated = True
- self.score = new_track.score
- self.cls = new_track.cls
- self.idx = new_track.idx
- def convert_coords(self, tlwh):
- """Convert a bounding box's top-left-width-height format to its x-y-angle-height equivalent."""
- return self.tlwh_to_xyah(tlwh)
- @property
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
- @property
- def tlbr(self):
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
- `(top left, bottom right)`.
- """
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
- @staticmethod
- def tlwh_to_xyah(tlwh):
- """Convert bounding box to format `(center x, center y, aspect ratio,
- height)`, where the aspect ratio is `width / height`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
- @staticmethod
- def tlbr_to_tlwh(tlbr):
- """Converts top-left bottom-right format to top-left width height format."""
- ret = np.asarray(tlbr).copy()
- ret[2:] -= ret[:2]
- return ret
- @staticmethod
- def tlwh_to_tlbr(tlwh):
- """Converts tlwh bounding box format to tlbr format."""
- ret = np.asarray(tlwh).copy()
- ret[2:] += ret[:2]
- return ret
- def __repr__(self):
- """Return a string representation of the BYTETracker object with start and end frames and track ID."""
- return f'OT_{self.track_id}_({self.start_frame}-{self.end_frame})'
- class BYTETracker:
- def __init__(self, args, frame_rate=30):
- """Initialize a YOLOv8 object to track objects with given arguments and frame rate."""
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
- self.frame_id = 0
- self.args = args
- self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
- self.kalman_filter = self.get_kalmanfilter()
- self.reset_id()
- def update(self, results, img=None):
- """Updates object tracker with new detections and returns tracked object bounding boxes."""
- self.frame_id += 1
- activated_stracks = []
- refind_stracks = []
- lost_stracks = []
- removed_stracks = []
- scores = results.conf
- bboxes = results.xyxy
- # Add index
- bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
- cls = results.cls
- remain_inds = scores > self.args.track_high_thresh
- inds_low = scores > self.args.track_low_thresh
- inds_high = scores < self.args.track_high_thresh
- inds_second = np.logical_and(inds_low, inds_high)
- dets_second = bboxes[inds_second]
- dets = bboxes[remain_inds]
- scores_keep = scores[remain_inds]
- scores_second = scores[inds_second]
- cls_keep = cls[remain_inds]
- cls_second = cls[inds_second]
- detections = self.init_track(dets, scores_keep, cls_keep, img)
- # Add newly detected tracklets to tracked_stracks
- unconfirmed = []
- tracked_stracks = [] # type: list[STrack]
- for track in self.tracked_stracks:
- if not track.is_activated:
- unconfirmed.append(track)
- else:
- tracked_stracks.append(track)
- # Step 2: First association, with high score detection boxes
- strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
- # Predict the current location with KF
- self.multi_predict(strack_pool)
- if hasattr(self, 'gmc') and img is not None:
- warp = self.gmc.apply(img, dets)
- STrack.multi_gmc(strack_pool, warp)
- STrack.multi_gmc(unconfirmed, warp)
- dists = self.get_dists(strack_pool, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
- for itracked, idet in matches:
- track = strack_pool[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_stracks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # Step 3: Second association, with low score detection boxes
- # association the untrack to the low score detections
- detections_second = self.init_track(dets_second, scores_second, cls_second, img)
- r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
- # TODO
- dists = matching.iou_distance(r_tracked_stracks, detections_second)
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
- for itracked, idet in matches:
- track = r_tracked_stracks[itracked]
- det = detections_second[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_stracks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- for it in u_track:
- track = r_tracked_stracks[it]
- if track.state != TrackState.Lost:
- track.mark_lost()
- lost_stracks.append(track)
- # Deal with unconfirmed tracks, usually tracks with only one beginning frame
- detections = [detections[i] for i in u_detection]
- dists = self.get_dists(unconfirmed, detections)
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
- for itracked, idet in matches:
- unconfirmed[itracked].update(detections[idet], self.frame_id)
- activated_stracks.append(unconfirmed[itracked])
- for it in u_unconfirmed:
- track = unconfirmed[it]
- track.mark_removed()
- removed_stracks.append(track)
- # Step 4: Init new stracks
- for inew in u_detection:
- track = detections[inew]
- if track.score < self.args.new_track_thresh:
- continue
- track.activate(self.kalman_filter, self.frame_id)
- activated_stracks.append(track)
- # Step 5: Update state
- for track in self.lost_stracks:
- if self.frame_id - track.end_frame > self.max_time_lost:
- track.mark_removed()
- removed_stracks.append(track)
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
- self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
- self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
- self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
- self.lost_stracks.extend(lost_stracks)
- self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
- self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
- self.removed_stracks.extend(removed_stracks)
- if len(self.removed_stracks) > 1000:
- self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
- return np.asarray(
- [x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated],
- dtype=np.float32)
- def get_kalmanfilter(self):
- """Returns a Kalman filter object for tracking bounding boxes."""
- return KalmanFilterXYAH()
- def init_track(self, dets, scores, cls, img=None):
- """Initialize object tracking with detections and scores using STrack algorithm."""
- return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections
- def get_dists(self, tracks, detections):
- """Calculates the distance between tracks and detections using IOU and fuses scores."""
- dists = matching.iou_distance(tracks, detections)
- # TODO: mot20
- # if not self.args.mot20:
- dists = matching.fuse_score(dists, detections)
- return dists
- def multi_predict(self, tracks):
- """Returns the predicted tracks using the YOLOv8 network."""
- STrack.multi_predict(tracks)
- def reset_id(self):
- """Resets the ID counter of STrack."""
- STrack.reset_id()
- @staticmethod
- def joint_stracks(tlista, tlistb):
- """Combine two lists of stracks into a single one."""
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
- @staticmethod
- def sub_stracks(tlista, tlistb):
- """DEPRECATED CODE in https://github.com/ultralytics/ultralytics/pull/1890/
- stracks = {t.track_id: t for t in tlista}
- for t in tlistb:
- tid = t.track_id
- if stracks.get(tid, 0):
- del stracks[tid]
- return list(stracks.values())
- """
- track_ids_b = {t.track_id for t in tlistb}
- return [t for t in tlista if t.track_id not in track_ids_b]
- @staticmethod
- def remove_duplicate_stracks(stracksa, stracksb):
- """Remove duplicate stracks with non-maximum IOU distance."""
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist < 0.15)
- dupa, dupb = [], []
- for p, q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i, t in enumerate(stracksa) if i not in dupa]
- resb = [t for i, t in enumerate(stracksb) if i not in dupb]
- return resa, resb
|