123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Model head modules
- """
- import math
- import torch
- import torch.nn as nn
- from torch.nn.init import constant_, xavier_uniform_
- from ultralytics.utils.tal import TORCH_1_10, dist2bbox, make_anchors
- from .block import DFL, Proto
- from .conv import Conv
- from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
- from .utils import bias_init_with_prob, linear_init_
- __all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
- class Detect(nn.Module):
- """YOLOv8 Detect head for detection models."""
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
- def __init__(self, nc=80, ch=()): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) # number of detection layers
- self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.stride = torch.zeros(self.nl) # strides computed during build
- c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
- self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
- self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
- def forward(self, x):
- """Concatenates and returns predicted bounding boxes and class probabilities."""
- shape = x[0].shape # BCHW
- for i in range(self.nl):
- x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
- if self.training:
- return x
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
- self.shape = shape
- x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
- if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops
- box = x_cat[:, :self.reg_max * 4]
- cls = x_cat[:, self.reg_max * 4:]
- else:
- box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- if self.export and self.format in ('tflite', 'edgetpu'):
- # Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
- # https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
- # See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
- img_h = shape[2] * self.stride[0]
- img_w = shape[3] * self.stride[0]
- img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
- dbox /= img_size
- y = torch.cat((dbox, cls.sigmoid()), 1)
- return y if self.export else (y, x)
- def bias_init(self):
- """Initialize Detect() biases, WARNING: requires stride availability."""
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
- class Segment(Detect):
- """YOLOv8 Segment head for segmentation models."""
- def __init__(self, nc=80, nm=32, npr=256, ch=()):
- """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
- super().__init__(nc, ch)
- self.nm = nm # number of masks
- self.npr = npr # number of protos
- self.proto = Proto(ch[0], self.npr, self.nm) # protos
- self.detect = Detect.forward
- c4 = max(ch[0] // 4, self.nm)
- self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
- def forward(self, x):
- """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
- p = self.proto(x[0]) # mask protos
- bs = p.shape[0] # batch size
- mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
- x = self.detect(self, x)
- if self.training:
- return x, mc, p
- return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
- class Pose(Detect):
- """YOLOv8 Pose head for keypoints models."""
- def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
- """Initialize YOLO network with default parameters and Convolutional Layers."""
- super().__init__(nc, ch)
- self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
- self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
- self.detect = Detect.forward
- c4 = max(ch[0] // 4, self.nk)
- self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
- def forward(self, x):
- """Perform forward pass through YOLO model and return predictions."""
- bs = x[0].shape[0] # batch size
- kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
- x = self.detect(self, x)
- if self.training:
- return x, kpt
- pred_kpt = self.kpts_decode(bs, kpt)
- return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
- def kpts_decode(self, bs, kpts):
- """Decodes keypoints."""
- ndim = self.kpt_shape[1]
- if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
- y = kpts.view(bs, *self.kpt_shape, -1)
- a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
- if ndim == 3:
- a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
- return a.view(bs, self.nk, -1)
- else:
- y = kpts.clone()
- if ndim == 3:
- y[:, 2::3].sigmoid_() # inplace sigmoid
- y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
- y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
- return y
- class Classify(nn.Module):
- """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- c_ = 1280 # efficientnet_b0 size
- self.conv = Conv(c1, c_, k, s, p, g)
- self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
- self.drop = nn.Dropout(p=0.0, inplace=True)
- self.linear = nn.Linear(c_, c2) # to x(b,c2)
- def forward(self, x):
- """Performs a forward pass of the YOLO model on input image data."""
- if isinstance(x, list):
- x = torch.cat(x, 1)
- x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
- return x if self.training else x.softmax(1)
- class RTDETRDecoder(nn.Module):
- export = False # export mode
- def __init__(
- self,
- nc=80,
- ch=(512, 1024, 2048),
- hd=256, # hidden dim
- nq=300, # num queries
- ndp=4, # num decoder points
- nh=8, # num head
- ndl=6, # num decoder layers
- d_ffn=1024, # dim of feedforward
- dropout=0.,
- act=nn.ReLU(),
- eval_idx=-1,
- # training args
- nd=100, # num denoising
- label_noise_ratio=0.5,
- box_noise_scale=1.0,
- learnt_init_query=False):
- super().__init__()
- self.hidden_dim = hd
- self.nhead = nh
- self.nl = len(ch) # num level
- self.nc = nc
- self.num_queries = nq
- self.num_decoder_layers = ndl
- # backbone feature projection
- self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
- # NOTE: simplified version but it's not consistent with .pt weights.
- # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
- # Transformer module
- decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
- self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
- # denoising part
- self.denoising_class_embed = nn.Embedding(nc, hd)
- self.num_denoising = nd
- self.label_noise_ratio = label_noise_ratio
- self.box_noise_scale = box_noise_scale
- # decoder embedding
- self.learnt_init_query = learnt_init_query
- if learnt_init_query:
- self.tgt_embed = nn.Embedding(nq, hd)
- self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
- # encoder head
- self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
- self.enc_score_head = nn.Linear(hd, nc)
- self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
- # decoder head
- self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
- self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
- self._reset_parameters()
- def forward(self, x, batch=None):
- from ultralytics.models.utils.ops import get_cdn_group
- # input projection and embedding
- feats, shapes = self._get_encoder_input(x)
- # prepare denoising training
- dn_embed, dn_bbox, attn_mask, dn_meta = \
- get_cdn_group(batch,
- self.nc,
- self.num_queries,
- self.denoising_class_embed.weight,
- self.num_denoising,
- self.label_noise_ratio,
- self.box_noise_scale,
- self.training)
- embed, refer_bbox, enc_bboxes, enc_scores = \
- self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
- # decoder
- dec_bboxes, dec_scores = self.decoder(embed,
- refer_bbox,
- feats,
- shapes,
- self.dec_bbox_head,
- self.dec_score_head,
- self.query_pos_head,
- attn_mask=attn_mask)
- x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
- if self.training:
- return x
- # (bs, 300, 4+nc)
- y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
- return y if self.export else (y, x)
- def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2):
- anchors = []
- for i, (h, w) in enumerate(shapes):
- sy = torch.arange(end=h, dtype=dtype, device=device)
- sx = torch.arange(end=w, dtype=dtype, device=device)
- grid_y, grid_x = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
- grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
- valid_WH = torch.tensor([h, w], dtype=dtype, device=device)
- grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
- wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i)
- anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
- anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
- valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
- anchors = torch.log(anchors / (1 - anchors))
- anchors = anchors.masked_fill(~valid_mask, float('inf'))
- return anchors, valid_mask
- def _get_encoder_input(self, x):
- # get projection features
- x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
- # get encoder inputs
- feats = []
- shapes = []
- for feat in x:
- h, w = feat.shape[2:]
- # [b, c, h, w] -> [b, h*w, c]
- feats.append(feat.flatten(2).permute(0, 2, 1))
- # [nl, 2]
- shapes.append([h, w])
- # [b, h*w, c]
- feats = torch.cat(feats, 1)
- return feats, shapes
- def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
- bs = len(feats)
- # prepare input for decoder
- anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
- features = self.enc_output(valid_mask * feats) # bs, h*w, 256
- enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
- # query selection
- # (bs, num_queries)
- topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
- # (bs, num_queries)
- batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
- # (bs, num_queries, 256)
- top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
- # (bs, num_queries, 4)
- top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
- # dynamic anchors + static content
- refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
- enc_bboxes = refer_bbox.sigmoid()
- if dn_bbox is not None:
- refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
- enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
- embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
- if self.training:
- refer_bbox = refer_bbox.detach()
- if not self.learnt_init_query:
- embeddings = embeddings.detach()
- if dn_embed is not None:
- embeddings = torch.cat([dn_embed, embeddings], 1)
- return embeddings, refer_bbox, enc_bboxes, enc_scores
- # TODO
- def _reset_parameters(self):
- # class and bbox head init
- bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
- # NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets.
- # linear_init_(self.enc_score_head)
- constant_(self.enc_score_head.bias, bias_cls)
- constant_(self.enc_bbox_head.layers[-1].weight, 0.)
- constant_(self.enc_bbox_head.layers[-1].bias, 0.)
- for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
- # linear_init_(cls_)
- constant_(cls_.bias, bias_cls)
- constant_(reg_.layers[-1].weight, 0.)
- constant_(reg_.layers[-1].bias, 0.)
- linear_init_(self.enc_output[0])
- xavier_uniform_(self.enc_output[0].weight)
- if self.learnt_init_query:
- xavier_uniform_(self.tgt_embed.weight)
- xavier_uniform_(self.query_pos_head.layers[0].weight)
- xavier_uniform_(self.query_pos_head.layers[1].weight)
- for layer in self.input_proj:
- xavier_uniform_(layer[0].weight)
|