yolov8-p2.yaml 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.33, 0.25, 1024]
  8. s: [0.33, 0.50, 1024]
  9. m: [0.67, 0.75, 768]
  10. l: [1.00, 1.00, 512]
  11. x: [1.00, 1.25, 512]
  12. # YOLOv8.0 backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 3, C2f, [128, True]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 6, C2f, [256, True]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 6, C2f, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 3, C2f, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. # YOLOv8.0-p2 head
  26. head:
  27. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  28. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  29. - [-1, 3, C2f, [512]] # 12
  30. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  31. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  32. - [-1, 3, C2f, [256]] # 15 (P3/8-small)
  33. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  34. - [[-1, 2], 1, Concat, [1]] # cat backbone P2
  35. - [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
  36. - [-1, 1, Conv, [128, 3, 2]]
  37. - [[-1, 15], 1, Concat, [1]] # cat head P3
  38. - [-1, 3, C2f, [256]] # 21 (P3/8-small)
  39. - [-1, 1, Conv, [256, 3, 2]]
  40. - [[-1, 12], 1, Concat, [1]] # cat head P4
  41. - [-1, 3, C2f, [512]] # 24 (P4/16-medium)
  42. - [-1, 1, Conv, [512, 3, 2]]
  43. - [[-1, 9], 1, Concat, [1]] # cat head P5
  44. - [-1, 3, C2f, [1024]] # 27 (P5/32-large)
  45. - [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)