1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
- # Parameters
- nc: 80 # number of classes
- activation: nn.ReLU() # (optional) model default activation function
- scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.33, 0.25, 1024]
- s: [0.33, 0.50, 1024]
- m: [0.67, 0.75, 768]
- l: [1.00, 1.00, 512]
- x: [1.00, 1.25, 512]
- # YOLOv6-3.0s backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 6, Conv, [128, 3, 1]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 12, Conv, [256, 3, 1]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 18, Conv, [512, 3, 1]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 6, Conv, [1024, 3, 1]]
- - [-1, 1, SPPF, [1024, 5]] # 9
- # YOLOv6-3.0s head
- head:
- - [-1, 1, Conv, [256, 1, 1]]
- - [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 1, Conv, [256, 3, 1]]
- - [-1, 9, Conv, [256, 3, 1]] # 14
- - [-1, 1, Conv, [128, 1, 1]]
- - [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 1, Conv, [128, 3, 1]]
- - [-1, 9, Conv, [128, 3, 1]] # 19
- - [-1, 1, Conv, [128, 3, 2]]
- - [[-1, 15], 1, Concat, [1]] # cat head P4
- - [-1, 1, Conv, [256, 3, 1]]
- - [-1, 9, Conv, [256, 3, 1]] # 23
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 10], 1, Concat, [1]] # cat head P5
- - [-1, 1, Conv, [512, 3, 1]]
- - [-1, 9, Conv, [512, 3, 1]] # 27
- - [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
|