123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
- # Example usage: yolo train data=open-images-v7.yaml
- # parent
- # ├── ultralytics
- # └── datasets
- # └── open-images-v7 ← downloads here (561 GB)
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
- path: ../datasets/open-images-v7 # dataset root dir
- train: images/train # train images (relative to 'path') 1743042 images
- val: images/val # val images (relative to 'path') 41620 images
- test: # test images (optional)
- # Classes
- names:
- 0: Accordion
- 1: Adhesive tape
- 2: Aircraft
- 3: Airplane
- 4: Alarm clock
- 5: Alpaca
- 6: Ambulance
- 7: Animal
- 8: Ant
- 9: Antelope
- 10: Apple
- 11: Armadillo
- 12: Artichoke
- 13: Auto part
- 14: Axe
- 15: Backpack
- 16: Bagel
- 17: Baked goods
- 18: Balance beam
- 19: Ball
- 20: Balloon
- 21: Banana
- 22: Band-aid
- 23: Banjo
- 24: Barge
- 25: Barrel
- 26: Baseball bat
- 27: Baseball glove
- 28: Bat (Animal)
- 29: Bathroom accessory
- 30: Bathroom cabinet
- 31: Bathtub
- 32: Beaker
- 33: Bear
- 34: Bed
- 35: Bee
- 36: Beehive
- 37: Beer
- 38: Beetle
- 39: Bell pepper
- 40: Belt
- 41: Bench
- 42: Bicycle
- 43: Bicycle helmet
- 44: Bicycle wheel
- 45: Bidet
- 46: Billboard
- 47: Billiard table
- 48: Binoculars
- 49: Bird
- 50: Blender
- 51: Blue jay
- 52: Boat
- 53: Bomb
- 54: Book
- 55: Bookcase
- 56: Boot
- 57: Bottle
- 58: Bottle opener
- 59: Bow and arrow
- 60: Bowl
- 61: Bowling equipment
- 62: Box
- 63: Boy
- 64: Brassiere
- 65: Bread
- 66: Briefcase
- 67: Broccoli
- 68: Bronze sculpture
- 69: Brown bear
- 70: Building
- 71: Bull
- 72: Burrito
- 73: Bus
- 74: Bust
- 75: Butterfly
- 76: Cabbage
- 77: Cabinetry
- 78: Cake
- 79: Cake stand
- 80: Calculator
- 81: Camel
- 82: Camera
- 83: Can opener
- 84: Canary
- 85: Candle
- 86: Candy
- 87: Cannon
- 88: Canoe
- 89: Cantaloupe
- 90: Car
- 91: Carnivore
- 92: Carrot
- 93: Cart
- 94: Cassette deck
- 95: Castle
- 96: Cat
- 97: Cat furniture
- 98: Caterpillar
- 99: Cattle
- 100: Ceiling fan
- 101: Cello
- 102: Centipede
- 103: Chainsaw
- 104: Chair
- 105: Cheese
- 106: Cheetah
- 107: Chest of drawers
- 108: Chicken
- 109: Chime
- 110: Chisel
- 111: Chopsticks
- 112: Christmas tree
- 113: Clock
- 114: Closet
- 115: Clothing
- 116: Coat
- 117: Cocktail
- 118: Cocktail shaker
- 119: Coconut
- 120: Coffee
- 121: Coffee cup
- 122: Coffee table
- 123: Coffeemaker
- 124: Coin
- 125: Common fig
- 126: Common sunflower
- 127: Computer keyboard
- 128: Computer monitor
- 129: Computer mouse
- 130: Container
- 131: Convenience store
- 132: Cookie
- 133: Cooking spray
- 134: Corded phone
- 135: Cosmetics
- 136: Couch
- 137: Countertop
- 138: Cowboy hat
- 139: Crab
- 140: Cream
- 141: Cricket ball
- 142: Crocodile
- 143: Croissant
- 144: Crown
- 145: Crutch
- 146: Cucumber
- 147: Cupboard
- 148: Curtain
- 149: Cutting board
- 150: Dagger
- 151: Dairy Product
- 152: Deer
- 153: Desk
- 154: Dessert
- 155: Diaper
- 156: Dice
- 157: Digital clock
- 158: Dinosaur
- 159: Dishwasher
- 160: Dog
- 161: Dog bed
- 162: Doll
- 163: Dolphin
- 164: Door
- 165: Door handle
- 166: Doughnut
- 167: Dragonfly
- 168: Drawer
- 169: Dress
- 170: Drill (Tool)
- 171: Drink
- 172: Drinking straw
- 173: Drum
- 174: Duck
- 175: Dumbbell
- 176: Eagle
- 177: Earrings
- 178: Egg (Food)
- 179: Elephant
- 180: Envelope
- 181: Eraser
- 182: Face powder
- 183: Facial tissue holder
- 184: Falcon
- 185: Fashion accessory
- 186: Fast food
- 187: Fax
- 188: Fedora
- 189: Filing cabinet
- 190: Fire hydrant
- 191: Fireplace
- 192: Fish
- 193: Flag
- 194: Flashlight
- 195: Flower
- 196: Flowerpot
- 197: Flute
- 198: Flying disc
- 199: Food
- 200: Food processor
- 201: Football
- 202: Football helmet
- 203: Footwear
- 204: Fork
- 205: Fountain
- 206: Fox
- 207: French fries
- 208: French horn
- 209: Frog
- 210: Fruit
- 211: Frying pan
- 212: Furniture
- 213: Garden Asparagus
- 214: Gas stove
- 215: Giraffe
- 216: Girl
- 217: Glasses
- 218: Glove
- 219: Goat
- 220: Goggles
- 221: Goldfish
- 222: Golf ball
- 223: Golf cart
- 224: Gondola
- 225: Goose
- 226: Grape
- 227: Grapefruit
- 228: Grinder
- 229: Guacamole
- 230: Guitar
- 231: Hair dryer
- 232: Hair spray
- 233: Hamburger
- 234: Hammer
- 235: Hamster
- 236: Hand dryer
- 237: Handbag
- 238: Handgun
- 239: Harbor seal
- 240: Harmonica
- 241: Harp
- 242: Harpsichord
- 243: Hat
- 244: Headphones
- 245: Heater
- 246: Hedgehog
- 247: Helicopter
- 248: Helmet
- 249: High heels
- 250: Hiking equipment
- 251: Hippopotamus
- 252: Home appliance
- 253: Honeycomb
- 254: Horizontal bar
- 255: Horse
- 256: Hot dog
- 257: House
- 258: Houseplant
- 259: Human arm
- 260: Human beard
- 261: Human body
- 262: Human ear
- 263: Human eye
- 264: Human face
- 265: Human foot
- 266: Human hair
- 267: Human hand
- 268: Human head
- 269: Human leg
- 270: Human mouth
- 271: Human nose
- 272: Humidifier
- 273: Ice cream
- 274: Indoor rower
- 275: Infant bed
- 276: Insect
- 277: Invertebrate
- 278: Ipod
- 279: Isopod
- 280: Jacket
- 281: Jacuzzi
- 282: Jaguar (Animal)
- 283: Jeans
- 284: Jellyfish
- 285: Jet ski
- 286: Jug
- 287: Juice
- 288: Kangaroo
- 289: Kettle
- 290: Kitchen & dining room table
- 291: Kitchen appliance
- 292: Kitchen knife
- 293: Kitchen utensil
- 294: Kitchenware
- 295: Kite
- 296: Knife
- 297: Koala
- 298: Ladder
- 299: Ladle
- 300: Ladybug
- 301: Lamp
- 302: Land vehicle
- 303: Lantern
- 304: Laptop
- 305: Lavender (Plant)
- 306: Lemon
- 307: Leopard
- 308: Light bulb
- 309: Light switch
- 310: Lighthouse
- 311: Lily
- 312: Limousine
- 313: Lion
- 314: Lipstick
- 315: Lizard
- 316: Lobster
- 317: Loveseat
- 318: Luggage and bags
- 319: Lynx
- 320: Magpie
- 321: Mammal
- 322: Man
- 323: Mango
- 324: Maple
- 325: Maracas
- 326: Marine invertebrates
- 327: Marine mammal
- 328: Measuring cup
- 329: Mechanical fan
- 330: Medical equipment
- 331: Microphone
- 332: Microwave oven
- 333: Milk
- 334: Miniskirt
- 335: Mirror
- 336: Missile
- 337: Mixer
- 338: Mixing bowl
- 339: Mobile phone
- 340: Monkey
- 341: Moths and butterflies
- 342: Motorcycle
- 343: Mouse
- 344: Muffin
- 345: Mug
- 346: Mule
- 347: Mushroom
- 348: Musical instrument
- 349: Musical keyboard
- 350: Nail (Construction)
- 351: Necklace
- 352: Nightstand
- 353: Oboe
- 354: Office building
- 355: Office supplies
- 356: Orange
- 357: Organ (Musical Instrument)
- 358: Ostrich
- 359: Otter
- 360: Oven
- 361: Owl
- 362: Oyster
- 363: Paddle
- 364: Palm tree
- 365: Pancake
- 366: Panda
- 367: Paper cutter
- 368: Paper towel
- 369: Parachute
- 370: Parking meter
- 371: Parrot
- 372: Pasta
- 373: Pastry
- 374: Peach
- 375: Pear
- 376: Pen
- 377: Pencil case
- 378: Pencil sharpener
- 379: Penguin
- 380: Perfume
- 381: Person
- 382: Personal care
- 383: Personal flotation device
- 384: Piano
- 385: Picnic basket
- 386: Picture frame
- 387: Pig
- 388: Pillow
- 389: Pineapple
- 390: Pitcher (Container)
- 391: Pizza
- 392: Pizza cutter
- 393: Plant
- 394: Plastic bag
- 395: Plate
- 396: Platter
- 397: Plumbing fixture
- 398: Polar bear
- 399: Pomegranate
- 400: Popcorn
- 401: Porch
- 402: Porcupine
- 403: Poster
- 404: Potato
- 405: Power plugs and sockets
- 406: Pressure cooker
- 407: Pretzel
- 408: Printer
- 409: Pumpkin
- 410: Punching bag
- 411: Rabbit
- 412: Raccoon
- 413: Racket
- 414: Radish
- 415: Ratchet (Device)
- 416: Raven
- 417: Rays and skates
- 418: Red panda
- 419: Refrigerator
- 420: Remote control
- 421: Reptile
- 422: Rhinoceros
- 423: Rifle
- 424: Ring binder
- 425: Rocket
- 426: Roller skates
- 427: Rose
- 428: Rugby ball
- 429: Ruler
- 430: Salad
- 431: Salt and pepper shakers
- 432: Sandal
- 433: Sandwich
- 434: Saucer
- 435: Saxophone
- 436: Scale
- 437: Scarf
- 438: Scissors
- 439: Scoreboard
- 440: Scorpion
- 441: Screwdriver
- 442: Sculpture
- 443: Sea lion
- 444: Sea turtle
- 445: Seafood
- 446: Seahorse
- 447: Seat belt
- 448: Segway
- 449: Serving tray
- 450: Sewing machine
- 451: Shark
- 452: Sheep
- 453: Shelf
- 454: Shellfish
- 455: Shirt
- 456: Shorts
- 457: Shotgun
- 458: Shower
- 459: Shrimp
- 460: Sink
- 461: Skateboard
- 462: Ski
- 463: Skirt
- 464: Skull
- 465: Skunk
- 466: Skyscraper
- 467: Slow cooker
- 468: Snack
- 469: Snail
- 470: Snake
- 471: Snowboard
- 472: Snowman
- 473: Snowmobile
- 474: Snowplow
- 475: Soap dispenser
- 476: Sock
- 477: Sofa bed
- 478: Sombrero
- 479: Sparrow
- 480: Spatula
- 481: Spice rack
- 482: Spider
- 483: Spoon
- 484: Sports equipment
- 485: Sports uniform
- 486: Squash (Plant)
- 487: Squid
- 488: Squirrel
- 489: Stairs
- 490: Stapler
- 491: Starfish
- 492: Stationary bicycle
- 493: Stethoscope
- 494: Stool
- 495: Stop sign
- 496: Strawberry
- 497: Street light
- 498: Stretcher
- 499: Studio couch
- 500: Submarine
- 501: Submarine sandwich
- 502: Suit
- 503: Suitcase
- 504: Sun hat
- 505: Sunglasses
- 506: Surfboard
- 507: Sushi
- 508: Swan
- 509: Swim cap
- 510: Swimming pool
- 511: Swimwear
- 512: Sword
- 513: Syringe
- 514: Table
- 515: Table tennis racket
- 516: Tablet computer
- 517: Tableware
- 518: Taco
- 519: Tank
- 520: Tap
- 521: Tart
- 522: Taxi
- 523: Tea
- 524: Teapot
- 525: Teddy bear
- 526: Telephone
- 527: Television
- 528: Tennis ball
- 529: Tennis racket
- 530: Tent
- 531: Tiara
- 532: Tick
- 533: Tie
- 534: Tiger
- 535: Tin can
- 536: Tire
- 537: Toaster
- 538: Toilet
- 539: Toilet paper
- 540: Tomato
- 541: Tool
- 542: Toothbrush
- 543: Torch
- 544: Tortoise
- 545: Towel
- 546: Tower
- 547: Toy
- 548: Traffic light
- 549: Traffic sign
- 550: Train
- 551: Training bench
- 552: Treadmill
- 553: Tree
- 554: Tree house
- 555: Tripod
- 556: Trombone
- 557: Trousers
- 558: Truck
- 559: Trumpet
- 560: Turkey
- 561: Turtle
- 562: Umbrella
- 563: Unicycle
- 564: Van
- 565: Vase
- 566: Vegetable
- 567: Vehicle
- 568: Vehicle registration plate
- 569: Violin
- 570: Volleyball (Ball)
- 571: Waffle
- 572: Waffle iron
- 573: Wall clock
- 574: Wardrobe
- 575: Washing machine
- 576: Waste container
- 577: Watch
- 578: Watercraft
- 579: Watermelon
- 580: Weapon
- 581: Whale
- 582: Wheel
- 583: Wheelchair
- 584: Whisk
- 585: Whiteboard
- 586: Willow
- 587: Window
- 588: Window blind
- 589: Wine
- 590: Wine glass
- 591: Wine rack
- 592: Winter melon
- 593: Wok
- 594: Woman
- 595: Wood-burning stove
- 596: Woodpecker
- 597: Worm
- 598: Wrench
- 599: Zebra
- 600: Zucchini
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
- download: |
- from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
- from ultralytics.utils.checks import check_requirements, check_version
- check_requirements('fiftyone')
- if is_ubuntu() and check_version(get_ubuntu_version(), '>=22.04'):
- # Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
- check_requirements('fiftyone-db-ubuntu2204')
- import fiftyone as fo
- import fiftyone.zoo as foz
- import warnings
- name = 'open-images-v7'
- fraction = 1.0 # fraction of full dataset to use
- LOGGER.warning('WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...')
- for split in 'train', 'validation': # 1743042 train, 41620 val images
- train = split == 'train'
- # Load Open Images dataset
- dataset = foz.load_zoo_dataset(name,
- split=split,
- label_types=['detections'],
- dataset_dir=Path(SETTINGS['datasets_dir']) / 'fiftyone' / name,
- max_samples=round((1743042 if train else 41620) * fraction))
- # Define classes
- if train:
- classes = dataset.default_classes # all classes
- # classes = dataset.distinct('ground_truth.detections.label') # only observed classes
- # Export to YOLO format
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
- dataset.export(export_dir=str(Path(SETTINGS['datasets_dir']) / name),
- dataset_type=fo.types.YOLOv5Dataset,
- label_field='ground_truth',
- split='val' if split == 'validation' else split,
- classes=classes,
- overwrite=train)
|