detection_predict.py 954 B

1234567891011121314151617181920212223242526272829
  1. from PIL import Image
  2. from ultralytics import YOLO
  3. # 加载预训练的YOLOv8n模型
  4. model = YOLO('models/detection/best.pt')
  5. # 在'bus.jpg'上运行推理
  6. results = model(['/home/nvidia/newdisk/hkpc/2.jpg']) # 结果列表
  7. # 展示结果
  8. for r in results:
  9. print("=========================")
  10. result_list = r.boxes.data.tolist()
  11. for sublist in result_list:
  12. print(sublist)
  13. conf = sublist[4]
  14. if float(conf) > 0.5:
  15. width = sublist[2] - sublist[0]
  16. hight = sublist[3] - sublist[1]
  17. print('width='+str(width)+" hight="+str(hight))
  18. #print(r.probs) # 打印包含检测到的类别概率的Probs对象
  19. im_array = r.plot() # 绘制包含预测结果的BGR numpy数组
  20. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像
  21. # im.show() # 显示图像
  22. im.save('results.jpg') # 保存图像