123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Preconditioners for linear systems that arise in Structure from
- // Motion problems. VisibilityBasedPreconditioner implements:
- //
- // CLUSTER_JACOBI
- // CLUSTER_TRIDIAGONAL
- //
- // Detailed descriptions of these preconditions beyond what is
- // documented here can be found in
- //
- // Visibility Based Preconditioning for Bundle Adjustment
- // A. Kushal & S. Agarwal, CVPR 2012.
- //
- // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
- //
- // The two preconditioners share enough code that its most efficient
- // to implement them as part of the same code base.
- #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
- #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
- #include <memory>
- #include <set>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "ceres/block_structure.h"
- #include "ceres/graph.h"
- #include "ceres/linear_solver.h"
- #include "ceres/pair_hash.h"
- #include "ceres/preconditioner.h"
- #include "ceres/sparse_cholesky.h"
- namespace ceres::internal {
- class BlockRandomAccessSparseMatrix;
- class BlockSparseMatrix;
- struct CompressedRowBlockStructure;
- class SchurEliminatorBase;
- // This class implements visibility based preconditioners for
- // Structure from Motion/Bundle Adjustment problems. The name
- // VisibilityBasedPreconditioner comes from the fact that the sparsity
- // structure of the preconditioner matrix is determined by analyzing
- // the visibility structure of the scene, i.e. which cameras see which
- // points.
- //
- // The key idea of visibility based preconditioning is to identify
- // cameras that we expect have strong interactions, and then using the
- // entries in the Schur complement matrix corresponding to these
- // camera pairs as an approximation to the full Schur complement.
- //
- // CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
- // and considering all non-zero camera pairs within each cluster. The
- // clustering in the current implementation is done using the
- // Canonical Views algorithm of Simon et al. (see
- // canonical_views_clustering.h). For the purposes of clustering, the
- // similarity or the degree of interaction between a pair of cameras
- // is measured by counting the number of points visible in both the
- // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
- // were to permute the parameter blocks such that all the cameras in
- // the same cluster occur contiguously, the preconditioner matrix will
- // be a block diagonal matrix with blocks corresponding to the
- // clusters. Thus in analogy with the Jacobi preconditioner we refer
- // to this as the CLUSTER_JACOBI preconditioner.
- //
- // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
- // preconditioner by considering the interaction between clusters and
- // identifying strong interactions between cluster pairs. This is done
- // by constructing a weighted graph on the clusters, with the weight
- // on the edges connecting two clusters proportional to the number of
- // 3D points visible to cameras in both the clusters. A degree-2
- // maximum spanning forest is identified in this graph and the camera
- // pairs contained in the edges of this forest are added to the
- // preconditioner. The detailed reasoning for this construction is
- // explained in the paper mentioned above.
- //
- // Degree-2 spanning trees and forests have the property that they
- // correspond to tri-diagonal matrices. Thus there exist a permutation
- // of the camera blocks under which the CLUSTER_TRIDIAGONAL
- // preconditioner matrix is a block tridiagonal matrix, and thus the
- // name for the preconditioner.
- //
- // Thread Safety: This class is NOT thread safe.
- //
- // Example usage:
- //
- // LinearSolver::Options options;
- // options.preconditioner_type = CLUSTER_JACOBI;
- // options.elimination_groups.push_back(num_points);
- // options.elimination_groups.push_back(num_cameras);
- // VisibilityBasedPreconditioner preconditioner(
- // *A.block_structure(), options);
- // preconditioner.Update(A, nullptr);
- // preconditioner.RightMultiplyAndAccumulate(x, y);
- class CERES_NO_EXPORT VisibilityBasedPreconditioner
- : public BlockSparseMatrixPreconditioner {
- public:
- // Initialize the symbolic structure of the preconditioner. bs is
- // the block structure of the linear system to be solved. It is used
- // to determine the sparsity structure of the preconditioner matrix.
- //
- // It has the same structural requirement as other Schur complement
- // based solvers. Please see schur_eliminator.h for more details.
- VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
- Preconditioner::Options options);
- VisibilityBasedPreconditioner(const VisibilityBasedPreconditioner&) = delete;
- void operator=(const VisibilityBasedPreconditioner&) = delete;
- ~VisibilityBasedPreconditioner() override;
- // Preconditioner interface
- void RightMultiplyAndAccumulate(const double* x, double* y) const final;
- int num_rows() const final;
- friend class VisibilityBasedPreconditionerTest;
- private:
- bool UpdateImpl(const BlockSparseMatrix& A, const double* D) final;
- void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
- void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
- void InitStorage(const CompressedRowBlockStructure& bs);
- void InitEliminator(const CompressedRowBlockStructure& bs);
- LinearSolverTerminationType Factorize();
- void ScaleOffDiagonalCells();
- void ClusterCameras(const std::vector<std::set<int>>& visibility);
- void FlattenMembershipMap(const std::unordered_map<int, int>& membership_map,
- std::vector<int>* membership_vector) const;
- void ComputeClusterVisibility(
- const std::vector<std::set<int>>& visibility,
- std::vector<std::set<int>>* cluster_visibility) const;
- std::unique_ptr<WeightedGraph<int>> CreateClusterGraph(
- const std::vector<std::set<int>>& visibility) const;
- void ForestToClusterPairs(
- const WeightedGraph<int>& forest,
- std::unordered_set<std::pair<int, int>, pair_hash>* cluster_pairs) const;
- void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
- bool IsBlockPairInPreconditioner(int block1, int block2) const;
- bool IsBlockPairOffDiagonal(int block1, int block2) const;
- Preconditioner::Options options_;
- // Number of parameter blocks in the schur complement.
- int num_blocks_;
- int num_clusters_;
- // Sizes of the blocks in the schur complement.
- std::vector<Block> blocks_;
- // Mapping from cameras to clusters.
- std::vector<int> cluster_membership_;
- // Non-zero camera pairs from the schur complement matrix that are
- // present in the preconditioner, sorted by row (first element of
- // each pair), then column (second).
- std::set<std::pair<int, int>> block_pairs_;
- // Set of cluster pairs (including self pairs (i,i)) in the
- // preconditioner.
- std::unordered_set<std::pair<int, int>, pair_hash> cluster_pairs_;
- std::unique_ptr<SchurEliminatorBase> eliminator_;
- // Preconditioner matrix.
- std::unique_ptr<BlockRandomAccessSparseMatrix> m_;
- std::unique_ptr<CompressedRowSparseMatrix> m_crs_;
- std::unique_ptr<SparseCholesky> sparse_cholesky_;
- };
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
|