123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- // sameeragarwal@google.com (Sameer Agarwal)
- //
- // This tests the TrustRegionMinimizer loop using a direct Evaluator
- // implementation, rather than having a test that goes through all the
- // Program and Problem machinery.
- #include "ceres/trust_region_minimizer.h"
- #include <cmath>
- #include <memory>
- #include "ceres/autodiff_cost_function.h"
- #include "ceres/cost_function.h"
- #include "ceres/dense_qr_solver.h"
- #include "ceres/dense_sparse_matrix.h"
- #include "ceres/evaluator.h"
- #include "ceres/internal/export.h"
- #include "ceres/linear_solver.h"
- #include "ceres/minimizer.h"
- #include "ceres/problem.h"
- #include "ceres/trust_region_strategy.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- // Templated Evaluator for Powell's function. The template parameters
- // indicate which of the four variables/columns of the jacobian are
- // active. This is equivalent to constructing a problem and using the
- // SubsetManifold. This allows us to test the support for
- // the Evaluator::Plus operation besides checking for the basic
- // performance of the trust region algorithm.
- template <bool col1, bool col2, bool col3, bool col4>
- class PowellEvaluator2 : public Evaluator {
- public:
- // clang-format off
- PowellEvaluator2()
- : num_active_cols_(
- (col1 ? 1 : 0) +
- (col2 ? 1 : 0) +
- (col3 ? 1 : 0) +
- (col4 ? 1 : 0)) {
- VLOG(1) << "Columns: "
- << col1 << " "
- << col2 << " "
- << col3 << " "
- << col4;
- }
- // clang-format on
- // Implementation of Evaluator interface.
- std::unique_ptr<SparseMatrix> CreateJacobian() const final {
- CHECK(col1 || col2 || col3 || col4);
- auto dense_jacobian = std::make_unique<DenseSparseMatrix>(
- NumResiduals(), NumEffectiveParameters());
- dense_jacobian->SetZero();
- return dense_jacobian;
- }
- bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
- const double* state,
- double* cost,
- double* residuals,
- double* gradient,
- SparseMatrix* jacobian) final {
- const double x1 = state[0];
- const double x2 = state[1];
- const double x3 = state[2];
- const double x4 = state[3];
- VLOG(1) << "State: "
- << "x1=" << x1 << ", "
- << "x2=" << x2 << ", "
- << "x3=" << x3 << ", "
- << "x4=" << x4 << ".";
- const double f1 = x1 + 10.0 * x2;
- const double f2 = sqrt(5.0) * (x3 - x4);
- const double f3 = pow(x2 - 2.0 * x3, 2.0);
- const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);
- VLOG(1) << "Function: "
- << "f1=" << f1 << ", "
- << "f2=" << f2 << ", "
- << "f3=" << f3 << ", "
- << "f4=" << f4 << ".";
- *cost = (f1 * f1 + f2 * f2 + f3 * f3 + f4 * f4) / 2.0;
- VLOG(1) << "Cost: " << *cost;
- if (residuals != nullptr) {
- residuals[0] = f1;
- residuals[1] = f2;
- residuals[2] = f3;
- residuals[3] = f4;
- }
- if (jacobian != nullptr) {
- DenseSparseMatrix* dense_jacobian;
- dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);
- dense_jacobian->SetZero();
- Matrix& jacobian_matrix = *(dense_jacobian->mutable_matrix());
- CHECK_EQ(jacobian_matrix.cols(), num_active_cols_);
- int column_index = 0;
- if (col1) {
- // clang-format off
- jacobian_matrix.col(column_index++) <<
- 1.0,
- 0.0,
- 0.0,
- sqrt(10.0) * 2.0 * (x1 - x4);
- // clang-format on
- }
- if (col2) {
- // clang-format off
- jacobian_matrix.col(column_index++) <<
- 10.0,
- 0.0,
- 2.0*(x2 - 2.0*x3),
- 0.0;
- // clang-format on
- }
- if (col3) {
- // clang-format off
- jacobian_matrix.col(column_index++) <<
- 0.0,
- sqrt(5.0),
- 4.0*(2.0*x3 - x2),
- 0.0;
- // clang-format on
- }
- if (col4) {
- // clang-format off
- jacobian_matrix.col(column_index++) <<
- 0.0,
- -sqrt(5.0),
- 0.0,
- sqrt(10.0) * 2.0 * (x4 - x1);
- // clang-format on
- }
- VLOG(1) << "\n" << jacobian_matrix;
- }
- if (gradient != nullptr) {
- int column_index = 0;
- if (col1) {
- gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4);
- }
- if (col2) {
- gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3);
- }
- if (col3) {
- gradient[column_index++] =
- f2 * sqrt(5.0) + f3 * (4.0 * (2.0 * x3 - x2));
- }
- if (col4) {
- gradient[column_index++] =
- -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1);
- }
- }
- return true;
- }
- bool Plus(const double* state,
- const double* delta,
- double* state_plus_delta) const final {
- int delta_index = 0;
- state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]);
- state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]);
- state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]);
- state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]);
- return true;
- }
- int NumEffectiveParameters() const final { return num_active_cols_; }
- int NumParameters() const final { return 4; }
- int NumResiduals() const final { return 4; }
- private:
- const int num_active_cols_;
- };
- // Templated function to hold a subset of the columns fixed and check
- // if the solver converges to the optimal values or not.
- template <bool col1, bool col2, bool col3, bool col4>
- void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) {
- Solver::Options solver_options;
- LinearSolver::Options linear_solver_options;
- DenseQRSolver linear_solver(linear_solver_options);
- double parameters[4] = {3, -1, 0, 1.0};
- // If the column is inactive, then set its value to the optimal
- // value.
- parameters[0] = (col1 ? parameters[0] : 0.0);
- parameters[1] = (col2 ? parameters[1] : 0.0);
- parameters[2] = (col3 ? parameters[2] : 0.0);
- parameters[3] = (col4 ? parameters[3] : 0.0);
- Minimizer::Options minimizer_options(solver_options);
- minimizer_options.gradient_tolerance = 1e-26;
- minimizer_options.function_tolerance = 1e-26;
- minimizer_options.parameter_tolerance = 1e-26;
- minimizer_options.evaluator =
- std::make_unique<PowellEvaluator2<col1, col2, col3, col4>>();
- minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian();
- TrustRegionStrategy::Options trust_region_strategy_options;
- trust_region_strategy_options.trust_region_strategy_type = strategy_type;
- trust_region_strategy_options.linear_solver = &linear_solver;
- trust_region_strategy_options.initial_radius = 1e4;
- trust_region_strategy_options.max_radius = 1e20;
- trust_region_strategy_options.min_lm_diagonal = 1e-6;
- trust_region_strategy_options.max_lm_diagonal = 1e32;
- minimizer_options.trust_region_strategy =
- TrustRegionStrategy::Create(trust_region_strategy_options);
- TrustRegionMinimizer minimizer;
- Solver::Summary summary;
- minimizer.Minimize(minimizer_options, parameters, &summary);
- // The minimum is at x1 = x2 = x3 = x4 = 0.
- EXPECT_NEAR(0.0, parameters[0], 0.001);
- EXPECT_NEAR(0.0, parameters[1], 0.001);
- EXPECT_NEAR(0.0, parameters[2], 0.001);
- EXPECT_NEAR(0.0, parameters[3], 0.001);
- }
- TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) {
- // This case is excluded because this has a local minimum and does
- // not find the optimum. This should not affect the correctness of
- // this test since we are testing all the other 14 combinations of
- // column activations.
- //
- // IsSolveSuccessful<true, true, false, true>();
- const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT;
- // clang-format off
- IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
- // clang-format on
- }
- TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) {
- // The following two cases are excluded because they encounter a
- // local minimum.
- //
- // IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy);
- // IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy);
- const TrustRegionStrategyType kStrategy = DOGLEG;
- // clang-format off
- IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy);
- IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy);
- IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
- // clang-format on
- }
- class CurveCostFunction : public CostFunction {
- public:
- CurveCostFunction(int num_vertices, double target_length)
- : num_vertices_(num_vertices), target_length_(target_length) {
- set_num_residuals(1);
- for (int i = 0; i < num_vertices_; ++i) {
- mutable_parameter_block_sizes()->push_back(2);
- }
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- residuals[0] = target_length_;
- for (int i = 0; i < num_vertices_; ++i) {
- int prev = (num_vertices_ + i - 1) % num_vertices_;
- double length = 0.0;
- for (int dim = 0; dim < 2; dim++) {
- const double diff = parameters[prev][dim] - parameters[i][dim];
- length += diff * diff;
- }
- residuals[0] -= sqrt(length);
- }
- if (jacobians == nullptr) {
- return true;
- }
- for (int i = 0; i < num_vertices_; ++i) {
- if (jacobians[i] != nullptr) {
- int prev = (num_vertices_ + i - 1) % num_vertices_;
- int next = (i + 1) % num_vertices_;
- double u[2], v[2];
- double norm_u = 0., norm_v = 0.;
- for (int dim = 0; dim < 2; dim++) {
- u[dim] = parameters[i][dim] - parameters[prev][dim];
- norm_u += u[dim] * u[dim];
- v[dim] = parameters[next][dim] - parameters[i][dim];
- norm_v += v[dim] * v[dim];
- }
- norm_u = sqrt(norm_u);
- norm_v = sqrt(norm_v);
- for (int dim = 0; dim < 2; dim++) {
- jacobians[i][dim] = 0.;
- if (norm_u > std::numeric_limits<double>::min()) {
- jacobians[i][dim] -= u[dim] / norm_u;
- }
- if (norm_v > std::numeric_limits<double>::min()) {
- jacobians[i][dim] += v[dim] / norm_v;
- }
- }
- }
- }
- return true;
- }
- private:
- int num_vertices_;
- double target_length_;
- };
- TEST(TrustRegionMinimizer, JacobiScalingTest) {
- int N = 6;
- std::vector<double*> y(N);
- const double pi = 3.1415926535897932384626433;
- for (int i = 0; i < N; i++) {
- double theta = i * 2. * pi / static_cast<double>(N);
- y[i] = new double[2];
- y[i][0] = cos(theta);
- y[i][1] = sin(theta);
- }
- Problem problem;
- problem.AddResidualBlock(new CurveCostFunction(N, 10.), nullptr, y);
- Solver::Options options;
- options.linear_solver_type = ceres::DENSE_QR;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- EXPECT_LE(summary.final_cost, 1e-10);
- for (int i = 0; i < N; i++) {
- delete[] y[i];
- }
- }
- struct ExpCostFunctor {
- template <typename T>
- bool operator()(const T* const x, T* residual) const {
- residual[0] = T(10.0) - exp(x[0]);
- return true;
- }
- static CostFunction* Create() {
- return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(new ExpCostFunctor);
- }
- };
- TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) {
- double x = 5;
- Problem problem;
- problem.AddResidualBlock(ExpCostFunctor::Create(), nullptr, &x);
- problem.SetParameterLowerBound(&x, 0, 3.0);
- Solver::Options options;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- EXPECT_NEAR(3.0, x, 1e-12);
- const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2);
- EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12);
- }
- } // namespace ceres::internal
|