123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: mierle@gmail.com (Keir Mierle)
- #include "ceres/tiny_solver_autodiff_function.h"
- #include <algorithm>
- #include <cmath>
- #include <limits>
- #include "ceres/tiny_solver.h"
- #include "ceres/tiny_solver_test_util.h"
- #include "gtest/gtest.h"
- namespace ceres {
- struct AutoDiffTestFunctor {
- template <typename T>
- bool operator()(const T* const parameters, T* residuals) const {
- // Shift the parameters so the solution is not at the origin, to prevent
- // accidentally showing "PASS".
- const T& a = parameters[0] - T(1.0);
- const T& b = parameters[1] - T(2.0);
- const T& c = parameters[2] - T(3.0);
- residuals[0] = 2. * a + 0. * b + 1. * c;
- residuals[1] = 0. * a + 4. * b + 6. * c;
- return true;
- }
- };
- // Leave a factor of 10 slop since these tests tend to mysteriously break on
- // other compilers or architectures if the tolerance is too tight.
- static double const kTolerance = std::numeric_limits<double>::epsilon() * 10;
- TEST(TinySolverAutoDiffFunction, SimpleFunction) {
- using AutoDiffTestFunction =
- TinySolverAutoDiffFunction<AutoDiffTestFunctor, 2, 3>;
- AutoDiffTestFunctor autodiff_test_functor;
- AutoDiffTestFunction f(autodiff_test_functor);
- Eigen::Vector3d x(2.0, 1.0, 4.0);
- Eigen::Vector2d residuals;
- // Check the case with cost-only evaluation.
- residuals.setConstant(555); // Arbitrary.
- EXPECT_TRUE(f(&x(0), &residuals(0), nullptr));
- EXPECT_NEAR(3.0, residuals(0), kTolerance);
- EXPECT_NEAR(2.0, residuals(1), kTolerance);
- // Check the case with cost and Jacobian evaluation.
- Eigen::Matrix<double, 2, 3> jacobian;
- residuals.setConstant(555); // Arbitrary.
- jacobian.setConstant(555);
- EXPECT_TRUE(f(&x(0), &residuals(0), &jacobian(0, 0)));
- // Verify cost.
- EXPECT_NEAR(3.0, residuals(0), kTolerance);
- EXPECT_NEAR(2.0, residuals(1), kTolerance);
- // Verify Jacobian Row 1.
- EXPECT_NEAR(2.0, jacobian(0, 0), kTolerance);
- EXPECT_NEAR(0.0, jacobian(0, 1), kTolerance);
- EXPECT_NEAR(1.0, jacobian(0, 2), kTolerance);
- // Verify Jacobian row 2.
- EXPECT_NEAR(0.0, jacobian(1, 0), kTolerance);
- EXPECT_NEAR(4.0, jacobian(1, 1), kTolerance);
- EXPECT_NEAR(6.0, jacobian(1, 2), kTolerance);
- }
- class DynamicResidualsFunctor {
- public:
- using Scalar = double;
- enum {
- NUM_RESIDUALS = Eigen::Dynamic,
- NUM_PARAMETERS = 3,
- };
- int NumResiduals() const { return 2; }
- template <typename T>
- bool operator()(const T* parameters, T* residuals) const {
- // Jacobian is not evaluated by cost function, but by autodiff.
- T* jacobian = nullptr;
- return EvaluateResidualsAndJacobians(parameters, residuals, jacobian);
- }
- };
- template <typename Function, typename Vector>
- void TestHelper(const Function& f, const Vector& x0) {
- Vector x = x0;
- Eigen::Vector2d residuals;
- f(x.data(), residuals.data(), nullptr);
- EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10);
- TinySolver<Function> solver;
- solver.Solve(f, &x);
- EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10);
- }
- // A test case for when the number of residuals is
- // dynamically sized and we use autodiff
- TEST(TinySolverAutoDiffFunction, ResidualsDynamicAutoDiff) {
- Eigen::Vector3d x0(0.76026643, -30.01799744, 0.55192142);
- DynamicResidualsFunctor f;
- using AutoDiffCostFunctor = ceres::
- TinySolverAutoDiffFunction<DynamicResidualsFunctor, Eigen::Dynamic, 3>;
- AutoDiffCostFunctor f_autodiff(f);
- Eigen::Vector2d residuals;
- f_autodiff(x0.data(), residuals.data(), nullptr);
- EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10);
- TinySolver<AutoDiffCostFunctor> solver;
- solver.Solve(f_autodiff, &x0);
- EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10);
- }
- } // namespace ceres
|