123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Interface definition for sparse matrices.
- #ifndef CERES_INTERNAL_SPARSE_MATRIX_H_
- #define CERES_INTERNAL_SPARSE_MATRIX_H_
- #include <cstdio>
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/linear_operator.h"
- #include "ceres/types.h"
- namespace ceres::internal {
- class ContextImpl;
- // This class defines the interface for storing and manipulating
- // sparse matrices. The key property that differentiates different
- // sparse matrices is how they are organized in memory and how the
- // information about the sparsity structure of the matrix is
- // stored. This has significant implications for linear solvers
- // operating on these matrices.
- //
- // To deal with the different kinds of layouts, we will assume that a
- // sparse matrix will have a two part representation. A values array
- // that will be used to store the entries of the sparse matrix and
- // some sort of a layout object that tells the user the sparsity
- // structure and layout of the values array. For example in case of
- // the TripletSparseMatrix, this information is carried in the rows
- // and cols arrays and for the BlockSparseMatrix, this information is
- // carried in the CompressedRowBlockStructure object.
- //
- // This interface deliberately does not contain any information about
- // the structure of the sparse matrix as that seems to be highly
- // matrix type dependent and we are at this stage unable to come up
- // with an efficient high level interface that spans multiple sparse
- // matrix types.
- class CERES_NO_EXPORT SparseMatrix : public LinearOperator {
- public:
- ~SparseMatrix() override;
- // y += Ax;
- using LinearOperator::RightMultiplyAndAccumulate;
- void RightMultiplyAndAccumulate(const double* x,
- double* y) const override = 0;
- // y += A'x;
- void LeftMultiplyAndAccumulate(const double* x, double* y) const override = 0;
- // In MATLAB notation sum(A.*A, 1)
- virtual void SquaredColumnNorm(double* x) const = 0;
- virtual void SquaredColumnNorm(double* x,
- ContextImpl* context,
- int num_threads) const;
- // A = A * diag(scale)
- virtual void ScaleColumns(const double* scale) = 0;
- virtual void ScaleColumns(const double* scale,
- ContextImpl* context,
- int num_threads);
- // A = 0. A->num_nonzeros() == 0 is true after this call. The
- // sparsity pattern is preserved.
- virtual void SetZero() = 0;
- virtual void SetZero(ContextImpl* /*context*/, int /*num_threads*/) {
- SetZero();
- }
- // Resize and populate dense_matrix with a dense version of the
- // sparse matrix.
- virtual void ToDenseMatrix(Matrix* dense_matrix) const = 0;
- // Write out the matrix as a sequence of (i,j,s) triplets. This
- // format is useful for loading the matrix into MATLAB/octave as a
- // sparse matrix.
- virtual void ToTextFile(FILE* file) const = 0;
- // Accessors for the values array that stores the entries of the
- // sparse matrix. The exact interpretation of the values of this
- // array depends on the particular kind of SparseMatrix being
- // accessed.
- virtual double* mutable_values() = 0;
- virtual const double* values() const = 0;
- int num_rows() const override = 0;
- int num_cols() const override = 0;
- virtual int num_nonzeros() const = 0;
- };
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_SPARSE_MATRIX_H_
|