123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/sparse_cholesky.h"
- #include <memory>
- #include <utility>
- #include "ceres/accelerate_sparse.h"
- #include "ceres/eigensparse.h"
- #include "ceres/float_suitesparse.h"
- #include "ceres/iterative_refiner.h"
- #include "ceres/suitesparse.h"
- namespace ceres::internal {
- std::unique_ptr<SparseCholesky> SparseCholesky::Create(
- const LinearSolver::Options& options) {
- std::unique_ptr<SparseCholesky> sparse_cholesky;
- switch (options.sparse_linear_algebra_library_type) {
- case SUITE_SPARSE:
- #ifndef CERES_NO_SUITESPARSE
- if (options.use_mixed_precision_solves) {
- sparse_cholesky =
- FloatSuiteSparseCholesky::Create(options.ordering_type);
- } else {
- sparse_cholesky = SuiteSparseCholesky::Create(options.ordering_type);
- }
- break;
- #else
- LOG(FATAL) << "Ceres was compiled without support for SuiteSparse.";
- #endif
- case EIGEN_SPARSE:
- #ifdef CERES_USE_EIGEN_SPARSE
- if (options.use_mixed_precision_solves) {
- sparse_cholesky =
- FloatEigenSparseCholesky::Create(options.ordering_type);
- } else {
- sparse_cholesky = EigenSparseCholesky::Create(options.ordering_type);
- }
- break;
- #else
- LOG(FATAL) << "Ceres was compiled without support for "
- << "Eigen's sparse Cholesky factorization routines.";
- #endif
- case ACCELERATE_SPARSE:
- #ifndef CERES_NO_ACCELERATE_SPARSE
- if (options.use_mixed_precision_solves) {
- sparse_cholesky =
- AppleAccelerateCholesky<float>::Create(options.ordering_type);
- } else {
- sparse_cholesky =
- AppleAccelerateCholesky<double>::Create(options.ordering_type);
- }
- break;
- #else
- LOG(FATAL) << "Ceres was compiled without support for Apple's Accelerate "
- << "framework solvers.";
- #endif
- default:
- LOG(FATAL) << "Unknown sparse linear algebra library type : "
- << SparseLinearAlgebraLibraryTypeToString(
- options.sparse_linear_algebra_library_type);
- }
- if (options.max_num_refinement_iterations > 0) {
- auto refiner = std::make_unique<SparseIterativeRefiner>(
- options.max_num_refinement_iterations);
- sparse_cholesky = std::make_unique<RefinedSparseCholesky>(
- std::move(sparse_cholesky), std::move(refiner));
- }
- return sparse_cholesky;
- }
- SparseCholesky::~SparseCholesky() = default;
- LinearSolverTerminationType SparseCholesky::FactorAndSolve(
- CompressedRowSparseMatrix* lhs,
- const double* rhs,
- double* solution,
- std::string* message) {
- LinearSolverTerminationType termination_type = Factorize(lhs, message);
- if (termination_type == LinearSolverTerminationType::SUCCESS) {
- termination_type = Solve(rhs, solution, message);
- }
- return termination_type;
- }
- RefinedSparseCholesky::RefinedSparseCholesky(
- std::unique_ptr<SparseCholesky> sparse_cholesky,
- std::unique_ptr<SparseIterativeRefiner> iterative_refiner)
- : sparse_cholesky_(std::move(sparse_cholesky)),
- iterative_refiner_(std::move(iterative_refiner)) {}
- RefinedSparseCholesky::~RefinedSparseCholesky() = default;
- CompressedRowSparseMatrix::StorageType RefinedSparseCholesky::StorageType()
- const {
- return sparse_cholesky_->StorageType();
- }
- LinearSolverTerminationType RefinedSparseCholesky::Factorize(
- CompressedRowSparseMatrix* lhs, std::string* message) {
- lhs_ = lhs;
- return sparse_cholesky_->Factorize(lhs, message);
- }
- LinearSolverTerminationType RefinedSparseCholesky::Solve(const double* rhs,
- double* solution,
- std::string* message) {
- CHECK(lhs_ != nullptr);
- auto termination_type = sparse_cholesky_->Solve(rhs, solution, message);
- if (termination_type != LinearSolverTerminationType::SUCCESS) {
- return termination_type;
- }
- iterative_refiner_->Refine(*lhs_, rhs, sparse_cholesky_.get(), solution);
- return LinearSolverTerminationType::SUCCESS;
- }
- } // namespace ceres::internal
|