123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: sameeragarwal@google.com (Sameer Agarwal)
- #include "Eigen/Dense"
- #include "benchmark/benchmark.h"
- #include "ceres/small_blas.h"
- namespace ceres {
- // Benchmarking matrix-vector multiply routines and optimizing memory
- // access requires that we make sure that they are not just sitting in
- // the cache. So, as the benchmarking routine iterates, we need to
- // multiply new/different matrice and vectors. Allocating/creating
- // these objects in the benchmarking loop is too heavy duty, so we
- // create them before hand and cycle through them in the
- // benchmark. This class, given the size of the matrix creates such
- // matrix and vector objects for use in the benchmark.
- class MatrixVectorMultiplyData {
- public:
- MatrixVectorMultiplyData(int rows, int cols)
- : num_elements_(1000),
- rows_(rows),
- cols_(cols),
- a_(num_elements_ * rows, 1.001),
- b_(num_elements_ * rows * cols, 1.5),
- c_(num_elements_ * cols, 1.00003) {}
- int num_elements() const { return num_elements_; }
- double* GetA(int i) { return &a_[i * rows_]; }
- double* GetB(int i) { return &b_[i * rows_ * cols_]; }
- double* GetC(int i) { return &c_[i * cols_]; }
- private:
- const int num_elements_;
- const int rows_;
- const int cols_;
- std::vector<double> a_;
- std::vector<double> b_;
- std::vector<double> c_;
- };
- // Helper function to generate the various matrix sizes for which we
- // run the benchmark.
- static void MatrixSizeArguments(benchmark::internal::Benchmark* benchmark) {
- std::vector<int> rows = {1, 2, 3, 4, 6, 8};
- std::vector<int> cols = {1, 2, 3, 4, 8, 12, 15};
- for (int r : rows) {
- for (int c : cols) {
- benchmark->Args({r, c});
- }
- }
- }
- static void BM_MatrixVectorMultiply(benchmark::State& state) {
- const int rows = state.range(0);
- const int cols = state.range(1);
- MatrixVectorMultiplyData data(rows, cols);
- const int num_elements = data.num_elements();
- int iter = 0;
- for (auto _ : state) {
- // A += B * C;
- internal::MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
- data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));
- iter = (iter + 1) % num_elements;
- }
- }
- BENCHMARK(BM_MatrixVectorMultiply)->Apply(MatrixSizeArguments);
- static void BM_MatrixTransposeVectorMultiply(benchmark::State& state) {
- const int rows = state.range(0);
- const int cols = state.range(1);
- MatrixVectorMultiplyData data(cols, rows);
- const int num_elements = data.num_elements();
- int iter = 0;
- for (auto _ : state) {
- internal::MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
- data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));
- iter = (iter + 1) % num_elements;
- }
- }
- BENCHMARK(BM_MatrixTransposeVectorMultiply)->Apply(MatrixSizeArguments);
- } // namespace ceres
- BENCHMARK_MAIN();
|