123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/schur_complement_solver.h"
- #include <algorithm>
- #include <ctime>
- #include <memory>
- #include <set>
- #include <utility>
- #include <vector>
- #include "Eigen/Dense"
- #include "Eigen/SparseCore"
- #include "ceres/block_random_access_dense_matrix.h"
- #include "ceres/block_random_access_matrix.h"
- #include "ceres/block_random_access_sparse_matrix.h"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/block_structure.h"
- #include "ceres/conjugate_gradients_solver.h"
- #include "ceres/detect_structure.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/linear_solver.h"
- #include "ceres/sparse_cholesky.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #include "ceres/wall_time.h"
- namespace ceres::internal {
- namespace {
- class BlockRandomAccessSparseMatrixAdapter final
- : public ConjugateGradientsLinearOperator<Vector> {
- public:
- explicit BlockRandomAccessSparseMatrixAdapter(
- const BlockRandomAccessSparseMatrix& m)
- : m_(m) {}
- void RightMultiplyAndAccumulate(const Vector& x, Vector& y) final {
- m_.SymmetricRightMultiplyAndAccumulate(x.data(), y.data());
- }
- private:
- const BlockRandomAccessSparseMatrix& m_;
- };
- class BlockRandomAccessDiagonalMatrixAdapter final
- : public ConjugateGradientsLinearOperator<Vector> {
- public:
- explicit BlockRandomAccessDiagonalMatrixAdapter(
- const BlockRandomAccessDiagonalMatrix& m)
- : m_(m) {}
- // y = y + Ax;
- void RightMultiplyAndAccumulate(const Vector& x, Vector& y) final {
- m_.RightMultiplyAndAccumulate(x.data(), y.data());
- }
- private:
- const BlockRandomAccessDiagonalMatrix& m_;
- };
- } // namespace
- SchurComplementSolver::SchurComplementSolver(
- const LinearSolver::Options& options)
- : options_(options) {
- CHECK_GT(options.elimination_groups.size(), 1);
- CHECK_GT(options.elimination_groups[0], 0);
- CHECK(options.context != nullptr);
- }
- LinearSolver::Summary SchurComplementSolver::SolveImpl(
- BlockSparseMatrix* A,
- const double* b,
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* x) {
- EventLogger event_logger("SchurComplementSolver::Solve");
- const CompressedRowBlockStructure* bs = A->block_structure();
- if (eliminator_ == nullptr) {
- const int num_eliminate_blocks = options_.elimination_groups[0];
- const int num_f_blocks = bs->cols.size() - num_eliminate_blocks;
- InitStorage(bs);
- DetectStructure(*bs,
- num_eliminate_blocks,
- &options_.row_block_size,
- &options_.e_block_size,
- &options_.f_block_size);
- // For the special case of the static structure <2,3,6> with
- // exactly one f block use the SchurEliminatorForOneFBlock.
- //
- // TODO(sameeragarwal): A more scalable template specialization
- // mechanism that does not cause binary bloat.
- if (options_.row_block_size == 2 && options_.e_block_size == 3 &&
- options_.f_block_size == 6 && num_f_blocks == 1) {
- eliminator_ = std::make_unique<SchurEliminatorForOneFBlock<2, 3, 6>>();
- } else {
- eliminator_ = SchurEliminatorBase::Create(options_);
- }
- CHECK(eliminator_);
- const bool kFullRankETE = true;
- eliminator_->Init(num_eliminate_blocks, kFullRankETE, bs);
- }
- std::fill(x, x + A->num_cols(), 0.0);
- event_logger.AddEvent("Setup");
- eliminator_->Eliminate(BlockSparseMatrixData(*A),
- b,
- per_solve_options.D,
- lhs_.get(),
- rhs_.data());
- event_logger.AddEvent("Eliminate");
- double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
- const LinearSolver::Summary summary =
- SolveReducedLinearSystem(per_solve_options, reduced_solution);
- event_logger.AddEvent("ReducedSolve");
- if (summary.termination_type == LinearSolverTerminationType::SUCCESS) {
- eliminator_->BackSubstitute(
- BlockSparseMatrixData(*A), b, per_solve_options.D, reduced_solution, x);
- event_logger.AddEvent("BackSubstitute");
- }
- return summary;
- }
- DenseSchurComplementSolver::DenseSchurComplementSolver(
- const LinearSolver::Options& options)
- : SchurComplementSolver(options),
- cholesky_(DenseCholesky::Create(options)) {}
- DenseSchurComplementSolver::~DenseSchurComplementSolver() = default;
- // Initialize a BlockRandomAccessDenseMatrix to store the Schur
- // complement.
- void DenseSchurComplementSolver::InitStorage(
- const CompressedRowBlockStructure* bs) {
- const int num_eliminate_blocks = options().elimination_groups[0];
- const int num_col_blocks = bs->cols.size();
- auto blocks = Tail(bs->cols, num_col_blocks - num_eliminate_blocks);
- set_lhs(std::make_unique<BlockRandomAccessDenseMatrix>(
- blocks, options().context, options().num_threads));
- ResizeRhs(lhs()->num_rows());
- }
- // Solve the system Sx = r, assuming that the matrix S is stored in a
- // BlockRandomAccessDenseMatrix. The linear system is solved using
- // Eigen's Cholesky factorization.
- LinearSolver::Summary DenseSchurComplementSolver::SolveReducedLinearSystem(
- const LinearSolver::PerSolveOptions& /*per_solve_options*/,
- double* solution) {
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LinearSolverTerminationType::SUCCESS;
- summary.message = "Success.";
- auto* m = down_cast<BlockRandomAccessDenseMatrix*>(mutable_lhs());
- const int num_rows = m->num_rows();
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- return summary;
- }
- summary.num_iterations = 1;
- summary.termination_type = cholesky_->FactorAndSolve(
- num_rows, m->mutable_values(), rhs().data(), solution, &summary.message);
- return summary;
- }
- SparseSchurComplementSolver::SparseSchurComplementSolver(
- const LinearSolver::Options& options)
- : SchurComplementSolver(options) {
- if (options.type != ITERATIVE_SCHUR) {
- sparse_cholesky_ = SparseCholesky::Create(options);
- }
- }
- SparseSchurComplementSolver::~SparseSchurComplementSolver() {
- for (int i = 0; i < 4; ++i) {
- if (scratch_[i]) {
- delete scratch_[i];
- scratch_[i] = nullptr;
- }
- }
- }
- // Determine the non-zero blocks in the Schur Complement matrix, and
- // initialize a BlockRandomAccessSparseMatrix object.
- void SparseSchurComplementSolver::InitStorage(
- const CompressedRowBlockStructure* bs) {
- const int num_eliminate_blocks = options().elimination_groups[0];
- const int num_col_blocks = bs->cols.size();
- const int num_row_blocks = bs->rows.size();
- blocks_ = Tail(bs->cols, num_col_blocks - num_eliminate_blocks);
- std::set<std::pair<int, int>> block_pairs;
- for (int i = 0; i < blocks_.size(); ++i) {
- block_pairs.emplace(i, i);
- }
- int r = 0;
- while (r < num_row_blocks) {
- int e_block_id = bs->rows[r].cells.front().block_id;
- if (e_block_id >= num_eliminate_blocks) {
- break;
- }
- std::vector<int> f_blocks;
- // Add to the chunk until the first block in the row is
- // different than the one in the first row for the chunk.
- for (; r < num_row_blocks; ++r) {
- const CompressedRow& row = bs->rows[r];
- if (row.cells.front().block_id != e_block_id) {
- break;
- }
- // Iterate over the blocks in the row, ignoring the first
- // block since it is the one to be eliminated.
- for (int c = 1; c < row.cells.size(); ++c) {
- const Cell& cell = row.cells[c];
- f_blocks.push_back(cell.block_id - num_eliminate_blocks);
- }
- }
- sort(f_blocks.begin(), f_blocks.end());
- f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
- for (int i = 0; i < f_blocks.size(); ++i) {
- for (int j = i + 1; j < f_blocks.size(); ++j) {
- block_pairs.emplace(f_blocks[i], f_blocks[j]);
- }
- }
- }
- // Remaining rows do not contribute to the chunks and directly go
- // into the schur complement via an outer product.
- for (; r < num_row_blocks; ++r) {
- const CompressedRow& row = bs->rows[r];
- CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
- for (int i = 0; i < row.cells.size(); ++i) {
- int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
- for (const auto& cell : row.cells) {
- int r_block2_id = cell.block_id - num_eliminate_blocks;
- if (r_block1_id <= r_block2_id) {
- block_pairs.emplace(r_block1_id, r_block2_id);
- }
- }
- }
- }
- set_lhs(std::make_unique<BlockRandomAccessSparseMatrix>(
- blocks_, block_pairs, options().context, options().num_threads));
- ResizeRhs(lhs()->num_rows());
- }
- LinearSolver::Summary SparseSchurComplementSolver::SolveReducedLinearSystem(
- const LinearSolver::PerSolveOptions& per_solve_options, double* solution) {
- if (options().type == ITERATIVE_SCHUR) {
- return SolveReducedLinearSystemUsingConjugateGradients(per_solve_options,
- solution);
- }
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LinearSolverTerminationType::SUCCESS;
- summary.message = "Success.";
- const BlockSparseMatrix* bsm =
- down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix();
- if (bsm->num_rows() == 0) {
- return summary;
- }
- const CompressedRowSparseMatrix::StorageType storage_type =
- sparse_cholesky_->StorageType();
- if (storage_type ==
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) {
- if (!crs_lhs_) {
- crs_lhs_ = bsm->ToCompressedRowSparseMatrix();
- crs_lhs_->set_storage_type(
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
- } else {
- bsm->UpdateCompressedRowSparseMatrix(crs_lhs_.get());
- }
- } else {
- if (!crs_lhs_) {
- crs_lhs_ = bsm->ToCompressedRowSparseMatrixTranspose();
- crs_lhs_->set_storage_type(
- CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR);
- } else {
- bsm->UpdateCompressedRowSparseMatrixTranspose(crs_lhs_.get());
- }
- }
- summary.num_iterations = 1;
- summary.termination_type = sparse_cholesky_->FactorAndSolve(
- crs_lhs_.get(), rhs().data(), solution, &summary.message);
- return summary;
- }
- LinearSolver::Summary
- SparseSchurComplementSolver::SolveReducedLinearSystemUsingConjugateGradients(
- const LinearSolver::PerSolveOptions& per_solve_options, double* solution) {
- CHECK(options().use_explicit_schur_complement);
- const int num_rows = lhs()->num_rows();
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LinearSolverTerminationType::SUCCESS;
- summary.message = "Success.";
- return summary;
- }
- // Only SCHUR_JACOBI is supported over here right now.
- CHECK_EQ(options().preconditioner_type, SCHUR_JACOBI);
- if (preconditioner_ == nullptr) {
- preconditioner_ = std::make_unique<BlockRandomAccessDiagonalMatrix>(
- blocks_, options().context, options().num_threads);
- }
- auto* sc = down_cast<BlockRandomAccessSparseMatrix*>(mutable_lhs());
- // Extract block diagonal from the Schur complement to construct the
- // schur_jacobi preconditioner.
- for (int i = 0; i < blocks_.size(); ++i) {
- const int block_size = blocks_[i].size;
- int sc_r, sc_c, sc_row_stride, sc_col_stride;
- CellInfo* sc_cell_info =
- sc->GetCell(i, i, &sc_r, &sc_c, &sc_row_stride, &sc_col_stride);
- CHECK(sc_cell_info != nullptr);
- MatrixRef sc_m(sc_cell_info->values, sc_row_stride, sc_col_stride);
- int pre_r, pre_c, pre_row_stride, pre_col_stride;
- CellInfo* pre_cell_info = preconditioner_->GetCell(
- i, i, &pre_r, &pre_c, &pre_row_stride, &pre_col_stride);
- CHECK(pre_cell_info != nullptr);
- MatrixRef pre_m(pre_cell_info->values, pre_row_stride, pre_col_stride);
- pre_m.block(pre_r, pre_c, block_size, block_size) =
- sc_m.block(sc_r, sc_c, block_size, block_size);
- }
- preconditioner_->Invert();
- VectorRef(solution, num_rows).setZero();
- auto lhs = std::make_unique<BlockRandomAccessSparseMatrixAdapter>(*sc);
- auto preconditioner =
- std::make_unique<BlockRandomAccessDiagonalMatrixAdapter>(
- *preconditioner_);
- ConjugateGradientsSolverOptions cg_options;
- cg_options.min_num_iterations = options().min_num_iterations;
- cg_options.max_num_iterations = options().max_num_iterations;
- cg_options.residual_reset_period = options().residual_reset_period;
- cg_options.q_tolerance = per_solve_options.q_tolerance;
- cg_options.r_tolerance = per_solve_options.r_tolerance;
- cg_solution_ = Vector::Zero(sc->num_rows());
- for (int i = 0; i < 4; ++i) {
- if (scratch_[i] == nullptr) {
- scratch_[i] = new Vector(sc->num_rows());
- }
- }
- auto summary = ConjugateGradientsSolver<Vector>(
- cg_options, *lhs, rhs(), *preconditioner, scratch_, cg_solution_);
- VectorRef(solution, sc->num_rows()) = cg_solution_;
- return summary;
- }
- } // namespace ceres::internal
|