123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/reorder_program.h"
- #include <algorithm>
- #include <map>
- #include <memory>
- #include <numeric>
- #include <set>
- #include <string>
- #include <vector>
- #include "Eigen/SparseCore"
- #include "ceres/internal/config.h"
- #include "ceres/internal/export.h"
- #include "ceres/ordered_groups.h"
- #include "ceres/parameter_block.h"
- #include "ceres/parameter_block_ordering.h"
- #include "ceres/problem_impl.h"
- #include "ceres/program.h"
- #include "ceres/residual_block.h"
- #include "ceres/solver.h"
- #include "ceres/suitesparse.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #ifdef CERES_USE_EIGEN_SPARSE
- #ifndef CERES_NO_EIGEN_METIS
- #include <iostream> // Need this because MetisSupport refers to std::cerr.
- #include "Eigen/MetisSupport"
- #endif
- #include "Eigen/OrderingMethods"
- #endif
- #include "glog/logging.h"
- namespace ceres::internal {
- namespace {
- // Find the minimum index of any parameter block to the given
- // residual. Parameter blocks that have indices greater than
- // size_of_first_elimination_group are considered to have an index
- // equal to size_of_first_elimination_group.
- static int MinParameterBlock(const ResidualBlock* residual_block,
- int size_of_first_elimination_group) {
- int min_parameter_block_position = size_of_first_elimination_group;
- for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
- ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
- if (!parameter_block->IsConstant()) {
- CHECK_NE(parameter_block->index(), -1)
- << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
- << "This is a Ceres bug; please contact the developers!";
- min_parameter_block_position =
- std::min(parameter_block->index(), min_parameter_block_position);
- }
- }
- return min_parameter_block_position;
- }
- Eigen::SparseMatrix<int> CreateBlockJacobian(
- const TripletSparseMatrix& block_jacobian_transpose) {
- using SparseMatrix = Eigen::SparseMatrix<int>;
- using Triplet = Eigen::Triplet<int>;
- const int* rows = block_jacobian_transpose.rows();
- const int* cols = block_jacobian_transpose.cols();
- int num_nonzeros = block_jacobian_transpose.num_nonzeros();
- std::vector<Triplet> triplets;
- triplets.reserve(num_nonzeros);
- for (int i = 0; i < num_nonzeros; ++i) {
- triplets.emplace_back(cols[i], rows[i], 1);
- }
- SparseMatrix block_jacobian(block_jacobian_transpose.num_cols(),
- block_jacobian_transpose.num_rows());
- block_jacobian.setFromTriplets(triplets.begin(), triplets.end());
- return block_jacobian;
- }
- void OrderingForSparseNormalCholeskyUsingSuiteSparse(
- const LinearSolverOrderingType linear_solver_ordering_type,
- const TripletSparseMatrix& tsm_block_jacobian_transpose,
- const std::vector<ParameterBlock*>& parameter_blocks,
- const ParameterBlockOrdering& parameter_block_ordering,
- int* ordering) {
- #ifdef CERES_NO_SUITESPARSE
- // "Void"ing values to avoid compiler warnings about unused parameters
- (void)linear_solver_ordering_type;
- (void)tsm_block_jacobian_transpose;
- (void)parameter_blocks;
- (void)parameter_block_ordering;
- (void)ordering;
- LOG(FATAL) << "Congratulations, you found a Ceres bug! "
- << "Please report this error to the developers.";
- #else
- SuiteSparse ss;
- cholmod_sparse* block_jacobian_transpose = ss.CreateSparseMatrix(
- const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
- if (linear_solver_ordering_type == ceres::AMD) {
- if (parameter_block_ordering.NumGroups() <= 1) {
- // The user did not supply a useful ordering so just go ahead
- // and use AMD.
- ss.Ordering(block_jacobian_transpose, OrderingType::AMD, ordering);
- } else {
- // The user supplied an ordering, so use CAMD.
- std::vector<int> constraints;
- constraints.reserve(parameter_blocks.size());
- for (auto* parameter_block : parameter_blocks) {
- constraints.push_back(parameter_block_ordering.GroupId(
- parameter_block->mutable_user_state()));
- }
- // Renumber the entries of constraints to be contiguous integers
- // as CAMD requires that the group ids be in the range [0,
- // parameter_blocks.size() - 1].
- MapValuesToContiguousRange(constraints.size(), constraints.data());
- ss.ConstrainedApproximateMinimumDegreeOrdering(
- block_jacobian_transpose, constraints.data(), ordering);
- }
- } else if (linear_solver_ordering_type == ceres::NESDIS) {
- // If nested dissection is chosen as an ordering algorithm, then
- // ignore any user provided linear_solver_ordering.
- CHECK(SuiteSparse::IsNestedDissectionAvailable())
- << "Congratulations, you found a Ceres bug! "
- << "Please report this error to the developers.";
- ss.Ordering(block_jacobian_transpose, OrderingType::NESDIS, ordering);
- } else {
- LOG(FATAL) << "Congratulations, you found a Ceres bug! "
- << "Please report this error to the developers.";
- }
- ss.Free(block_jacobian_transpose);
- #endif // CERES_NO_SUITESPARSE
- }
- void OrderingForSparseNormalCholeskyUsingEigenSparse(
- const LinearSolverOrderingType linear_solver_ordering_type,
- const TripletSparseMatrix& tsm_block_jacobian_transpose,
- int* ordering) {
- #ifndef CERES_USE_EIGEN_SPARSE
- LOG(FATAL) << "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE "
- "because Ceres was not built with support for "
- "Eigen's SimplicialLDLT decomposition. "
- "This requires enabling building with -DEIGENSPARSE=ON.";
- #else
- // TODO(sameeragarwal): This conversion from a TripletSparseMatrix
- // to a Eigen::Triplet matrix is unfortunate, but unavoidable for
- // now. It is not a significant performance penalty in the grand
- // scheme of things. The right thing to do here would be to get a
- // compressed row sparse matrix representation of the jacobian and
- // go from there. But that is a project for another day.
- using SparseMatrix = Eigen::SparseMatrix<int>;
- const SparseMatrix block_jacobian =
- CreateBlockJacobian(tsm_block_jacobian_transpose);
- const SparseMatrix block_hessian =
- block_jacobian.transpose() * block_jacobian;
- Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
- if (linear_solver_ordering_type == ceres::AMD) {
- Eigen::AMDOrdering<int> amd_ordering;
- amd_ordering(block_hessian, perm);
- } else {
- #ifndef CERES_NO_EIGEN_METIS
- Eigen::MetisOrdering<int> metis_ordering;
- metis_ordering(block_hessian, perm);
- #else
- perm.setIdentity(block_hessian.rows());
- #endif
- }
- for (int i = 0; i < block_hessian.rows(); ++i) {
- ordering[i] = perm.indices()[i];
- }
- #endif // CERES_USE_EIGEN_SPARSE
- }
- } // namespace
- bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map,
- const ParameterBlockOrdering& ordering,
- Program* program,
- std::string* error) {
- const int num_parameter_blocks = program->NumParameterBlocks();
- if (ordering.NumElements() != num_parameter_blocks) {
- *error = StringPrintf(
- "User specified ordering does not have the same "
- "number of parameters as the problem. The problem"
- "has %d blocks while the ordering has %d blocks.",
- num_parameter_blocks,
- ordering.NumElements());
- return false;
- }
- std::vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
- parameter_blocks->clear();
- // TODO(sameeragarwal): Investigate whether this should be a set or an
- // unordered_set.
- const std::map<int, std::set<double*>>& groups = ordering.group_to_elements();
- for (const auto& p : groups) {
- const std::set<double*>& group = p.second;
- for (double* parameter_block_ptr : group) {
- auto it = parameter_map.find(parameter_block_ptr);
- if (it == parameter_map.end()) {
- *error = StringPrintf(
- "User specified ordering contains a pointer "
- "to a double that is not a parameter block in "
- "the problem. The invalid double is in group: %d",
- p.first);
- return false;
- }
- parameter_blocks->push_back(it->second);
- }
- }
- return true;
- }
- bool LexicographicallyOrderResidualBlocks(
- const int size_of_first_elimination_group,
- Program* program,
- std::string* /*error*/) {
- CHECK_GE(size_of_first_elimination_group, 1)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- // Create a histogram of the number of residuals for each E block. There is an
- // extra bucket at the end to catch all non-eliminated F blocks.
- std::vector<int> residual_blocks_per_e_block(size_of_first_elimination_group +
- 1);
- std::vector<ResidualBlock*>* residual_blocks =
- program->mutable_residual_blocks();
- std::vector<int> min_position_per_residual(residual_blocks->size());
- for (int i = 0; i < residual_blocks->size(); ++i) {
- ResidualBlock* residual_block = (*residual_blocks)[i];
- int position =
- MinParameterBlock(residual_block, size_of_first_elimination_group);
- min_position_per_residual[i] = position;
- DCHECK_LE(position, size_of_first_elimination_group);
- residual_blocks_per_e_block[position]++;
- }
- // Run a cumulative sum on the histogram, to obtain offsets to the start of
- // each histogram bucket (where each bucket is for the residuals for that
- // E-block).
- std::vector<int> offsets(size_of_first_elimination_group + 1);
- std::partial_sum(residual_blocks_per_e_block.begin(),
- residual_blocks_per_e_block.end(),
- offsets.begin());
- CHECK_EQ(offsets.back(), residual_blocks->size())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- CHECK(find(residual_blocks_per_e_block.begin(),
- residual_blocks_per_e_block.end() - 1,
- 0) == residual_blocks_per_e_block.end() - 1)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- // Fill in each bucket with the residual blocks for its corresponding E block.
- // Each bucket is individually filled from the back of the bucket to the front
- // of the bucket. The filling order among the buckets is dictated by the
- // residual blocks. This loop uses the offsets as counters; subtracting one
- // from each offset as a residual block is placed in the bucket. When the
- // filling is finished, the offset pointers should have shifted down one
- // entry (this is verified below).
- std::vector<ResidualBlock*> reordered_residual_blocks(
- (*residual_blocks).size(), static_cast<ResidualBlock*>(nullptr));
- for (int i = 0; i < residual_blocks->size(); ++i) {
- int bucket = min_position_per_residual[i];
- // Decrement the cursor, which should now point at the next empty position.
- offsets[bucket]--;
- // Sanity.
- CHECK(reordered_residual_blocks[offsets[bucket]] == nullptr)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
- }
- // Sanity check #1: The difference in bucket offsets should match the
- // histogram sizes.
- for (int i = 0; i < size_of_first_elimination_group; ++i) {
- CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- }
- // Sanity check #2: No nullptr's left behind.
- for (auto* residual_block : reordered_residual_blocks) {
- CHECK(residual_block != nullptr)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- }
- // Now that the residuals are collected by E block, swap them in place.
- swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
- return true;
- }
- // Pre-order the columns corresponding to the Schur complement if
- // possible.
- static void ReorderSchurComplementColumnsUsingSuiteSparse(
- const ParameterBlockOrdering& parameter_block_ordering, Program* program) {
- #ifdef CERES_NO_SUITESPARSE
- // "Void"ing values to avoid compiler warnings about unused parameters
- (void)parameter_block_ordering;
- (void)program;
- #else
- SuiteSparse ss;
- std::vector<int> constraints;
- std::vector<ParameterBlock*>& parameter_blocks =
- *(program->mutable_parameter_blocks());
- for (auto* parameter_block : parameter_blocks) {
- constraints.push_back(parameter_block_ordering.GroupId(
- parameter_block->mutable_user_state()));
- }
- // Renumber the entries of constraints to be contiguous integers as
- // CAMD requires that the group ids be in the range [0,
- // parameter_blocks.size() - 1].
- MapValuesToContiguousRange(constraints.size(), constraints.data());
- // Compute a block sparse presentation of J'.
- std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- program->CreateJacobianBlockSparsityTranspose());
- cholmod_sparse* block_jacobian_transpose =
- ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
- std::vector<int> ordering(parameter_blocks.size(), 0);
- ss.ConstrainedApproximateMinimumDegreeOrdering(
- block_jacobian_transpose, constraints.data(), ordering.data());
- ss.Free(block_jacobian_transpose);
- const std::vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
- for (int i = 0; i < program->NumParameterBlocks(); ++i) {
- parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
- }
- program->SetParameterOffsetsAndIndex();
- #endif
- }
- static void ReorderSchurComplementColumnsUsingEigen(
- LinearSolverOrderingType ordering_type,
- const int size_of_first_elimination_group,
- const ProblemImpl::ParameterMap& /*parameter_map*/,
- Program* program) {
- #if defined(CERES_USE_EIGEN_SPARSE)
- std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- program->CreateJacobianBlockSparsityTranspose());
- using SparseMatrix = Eigen::SparseMatrix<int>;
- const SparseMatrix block_jacobian =
- CreateBlockJacobian(*tsm_block_jacobian_transpose);
- const int num_rows = block_jacobian.rows();
- const int num_cols = block_jacobian.cols();
- // Vertically partition the jacobian in parameter blocks of type E
- // and F.
- const SparseMatrix E =
- block_jacobian.block(0, 0, num_rows, size_of_first_elimination_group);
- const SparseMatrix F =
- block_jacobian.block(0,
- size_of_first_elimination_group,
- num_rows,
- num_cols - size_of_first_elimination_group);
- // Block sparsity pattern of the schur complement.
- const SparseMatrix block_schur_complement =
- F.transpose() * F - F.transpose() * E * E.transpose() * F;
- Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
- if (ordering_type == ceres::AMD) {
- Eigen::AMDOrdering<int> amd_ordering;
- amd_ordering(block_schur_complement, perm);
- } else {
- #ifndef CERES_NO_EIGEN_METIS
- Eigen::MetisOrdering<int> metis_ordering;
- metis_ordering(block_schur_complement, perm);
- #else
- perm.setIdentity(block_schur_complement.rows());
- #endif
- }
- const std::vector<ParameterBlock*>& parameter_blocks =
- program->parameter_blocks();
- std::vector<ParameterBlock*> ordering(num_cols);
- // The ordering of the first size_of_first_elimination_group does
- // not matter, so we preserve the existing ordering.
- for (int i = 0; i < size_of_first_elimination_group; ++i) {
- ordering[i] = parameter_blocks[i];
- }
- // For the rest of the blocks, use the ordering computed using AMD.
- for (int i = 0; i < block_schur_complement.cols(); ++i) {
- ordering[size_of_first_elimination_group + i] =
- parameter_blocks[size_of_first_elimination_group + perm.indices()[i]];
- }
- swap(*program->mutable_parameter_blocks(), ordering);
- program->SetParameterOffsetsAndIndex();
- #endif
- }
- bool ReorderProgramForSchurTypeLinearSolver(
- const LinearSolverType linear_solver_type,
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const LinearSolverOrderingType linear_solver_ordering_type,
- const ProblemImpl::ParameterMap& parameter_map,
- ParameterBlockOrdering* parameter_block_ordering,
- Program* program,
- std::string* error) {
- if (parameter_block_ordering->NumElements() !=
- program->NumParameterBlocks()) {
- *error = StringPrintf(
- "The program has %d parameter blocks, but the parameter block "
- "ordering has %d parameter blocks.",
- program->NumParameterBlocks(),
- parameter_block_ordering->NumElements());
- return false;
- }
- if (parameter_block_ordering->NumGroups() == 1) {
- // If the user supplied an parameter_block_ordering with just one
- // group, it is equivalent to the user supplying nullptr as an
- // parameter_block_ordering. Ceres is completely free to choose the
- // parameter block ordering as it sees fit. For Schur type solvers,
- // this means that the user wishes for Ceres to identify the
- // e_blocks, which we do by computing a maximal independent set.
- std::vector<ParameterBlock*> schur_ordering;
- const int size_of_first_elimination_group =
- ComputeStableSchurOrdering(*program, &schur_ordering);
- CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- // Update the parameter_block_ordering object.
- for (int i = 0; i < schur_ordering.size(); ++i) {
- double* parameter_block = schur_ordering[i]->mutable_user_state();
- const int group_id = (i < size_of_first_elimination_group) ? 0 : 1;
- parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
- }
- // We could call ApplyOrdering but this is cheaper and
- // simpler.
- swap(*program->mutable_parameter_blocks(), schur_ordering);
- } else {
- // The user provided an ordering with more than one elimination
- // group.
- // Verify that the first elimination group is an independent set.
- // TODO(sameeragarwal): Investigate if this should be a set or an
- // unordered_set.
- const std::set<double*>& first_elimination_group =
- parameter_block_ordering->group_to_elements().begin()->second;
- if (!program->IsParameterBlockSetIndependent(first_elimination_group)) {
- *error = StringPrintf(
- "The first elimination group in the parameter block "
- "ordering of size %zd is not an independent set",
- first_elimination_group.size());
- return false;
- }
- if (!ApplyOrdering(
- parameter_map, *parameter_block_ordering, program, error)) {
- return false;
- }
- }
- program->SetParameterOffsetsAndIndex();
- const int size_of_first_elimination_group =
- parameter_block_ordering->group_to_elements().begin()->second.size();
- if (linear_solver_type == SPARSE_SCHUR) {
- if (sparse_linear_algebra_library_type == SUITE_SPARSE &&
- linear_solver_ordering_type == ceres::AMD) {
- // Preordering support for schur complement only works with AMD
- // for now, since we are using CAMD.
- //
- // TODO(sameeragarwal): It maybe worth adding pre-ordering support for
- // nested dissection too.
- ReorderSchurComplementColumnsUsingSuiteSparse(*parameter_block_ordering,
- program);
- } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
- ReorderSchurComplementColumnsUsingEigen(linear_solver_ordering_type,
- size_of_first_elimination_group,
- parameter_map,
- program);
- }
- }
- // Schur type solvers also require that their residual blocks be
- // lexicographically ordered.
- return LexicographicallyOrderResidualBlocks(
- size_of_first_elimination_group, program, error);
- }
- bool ReorderProgramForSparseCholesky(
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const LinearSolverOrderingType linear_solver_ordering_type,
- const ParameterBlockOrdering& parameter_block_ordering,
- int start_row_block,
- Program* program,
- std::string* error) {
- if (parameter_block_ordering.NumElements() != program->NumParameterBlocks()) {
- *error = StringPrintf(
- "The program has %d parameter blocks, but the parameter block "
- "ordering has %d parameter blocks.",
- program->NumParameterBlocks(),
- parameter_block_ordering.NumElements());
- return false;
- }
- // Compute a block sparse presentation of J'.
- std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- program->CreateJacobianBlockSparsityTranspose(start_row_block));
- std::vector<int> ordering(program->NumParameterBlocks(), 0);
- std::vector<ParameterBlock*>& parameter_blocks =
- *(program->mutable_parameter_blocks());
- if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
- OrderingForSparseNormalCholeskyUsingSuiteSparse(
- linear_solver_ordering_type,
- *tsm_block_jacobian_transpose,
- parameter_blocks,
- parameter_block_ordering,
- ordering.data());
- } else if (sparse_linear_algebra_library_type == ACCELERATE_SPARSE) {
- // Accelerate does not provide a function to perform reordering without
- // performing a full symbolic factorisation. As such, we have nothing
- // to gain from trying to reorder the problem here, as it will happen
- // in AppleAccelerateCholesky::Factorize() (once) and reordering here
- // would involve performing two symbolic factorisations instead of one
- // which would have a negative overall impact on performance.
- return true;
- } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
- OrderingForSparseNormalCholeskyUsingEigenSparse(
- linear_solver_ordering_type,
- *tsm_block_jacobian_transpose,
- ordering.data());
- }
- // Apply ordering.
- const std::vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
- for (int i = 0; i < program->NumParameterBlocks(); ++i) {
- parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
- }
- program->SetParameterOffsetsAndIndex();
- return true;
- }
- int ReorderResidualBlocksByPartition(
- const std::unordered_set<ResidualBlockId>& bottom_residual_blocks,
- Program* program) {
- auto residual_blocks = program->mutable_residual_blocks();
- auto it = std::partition(residual_blocks->begin(),
- residual_blocks->end(),
- [&bottom_residual_blocks](ResidualBlock* r) {
- return bottom_residual_blocks.count(r) == 0;
- });
- return it - residual_blocks->begin();
- }
- bool AreJacobianColumnsOrdered(
- const LinearSolverType linear_solver_type,
- const PreconditionerType preconditioner_type,
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const LinearSolverOrderingType linear_solver_ordering_type) {
- if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
- if (linear_solver_type == SPARSE_NORMAL_CHOLESKY ||
- (linear_solver_type == CGNR && preconditioner_type == SUBSET)) {
- return true;
- }
- if (linear_solver_type == SPARSE_SCHUR &&
- linear_solver_ordering_type == ceres::AMD) {
- return true;
- }
- return false;
- }
- if (sparse_linear_algebra_library_type == ceres::EIGEN_SPARSE) {
- if (linear_solver_type == SPARSE_NORMAL_CHOLESKY ||
- linear_solver_type == SPARSE_SCHUR ||
- (linear_solver_type == CGNR && preconditioner_type == SUBSET)) {
- return true;
- }
- return false;
- }
- if (sparse_linear_algebra_library_type == ceres::ACCELERATE_SPARSE) {
- // Apple's accelerate framework does not allow direct access to
- // ordering algorithms, so jacobian columns are never pre-ordered.
- return false;
- }
- return false;
- }
- } // namespace ceres::internal
|