123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: markshachkov@gmail.com (Mark Shachkov)
- #include "ceres/power_series_expansion_preconditioner.h"
- #include <memory>
- #include "Eigen/Dense"
- #include "ceres/linear_least_squares_problems.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- const double kEpsilon = 1e-14;
- class PowerSeriesExpansionPreconditionerTest : public ::testing::Test {
- protected:
- void SetUp() final {
- problem_ = CreateLinearLeastSquaresProblemFromId(5);
- const auto A = down_cast<BlockSparseMatrix*>(problem_->A.get());
- const auto D = problem_->D.get();
- options_.elimination_groups.push_back(problem_->num_eliminate_blocks);
- options_.preconditioner_type = SCHUR_POWER_SERIES_EXPANSION;
- preconditioner_options_ = Preconditioner::Options(options_);
- isc_ = std::make_unique<ImplicitSchurComplement>(options_);
- isc_->Init(*A, D, problem_->b.get());
- num_f_cols_ = isc_->rhs().rows();
- const int num_rows = A->num_rows(), num_cols = A->num_cols(),
- num_e_cols = num_cols - num_f_cols_;
- // Using predefined linear operator with schur structure and block-diagonal
- // F'F to explicitly construct schur complement and to calculate its inverse
- // to be used as a reference.
- Matrix A_dense, E, F, DE, DF;
- problem_->A->ToDenseMatrix(&A_dense);
- E = A_dense.leftCols(num_e_cols);
- F = A_dense.rightCols(num_f_cols_);
- DE = VectorRef(D, num_e_cols).asDiagonal();
- DF = VectorRef(D + num_e_cols, num_f_cols_).asDiagonal();
- sc_inverse_expected_ =
- (F.transpose() *
- (Matrix::Identity(num_rows, num_rows) -
- E * (E.transpose() * E + DE).inverse() * E.transpose()) *
- F +
- DF)
- .inverse();
- }
- std::unique_ptr<LinearLeastSquaresProblem> problem_;
- std::unique_ptr<ImplicitSchurComplement> isc_;
- int num_f_cols_;
- Matrix sc_inverse_expected_;
- LinearSolver::Options options_;
- Preconditioner::Options preconditioner_options_;
- };
- TEST_F(PowerSeriesExpansionPreconditionerTest,
- InverseValidPreconditionerToleranceReached) {
- const double spse_tolerance = kEpsilon;
- const int max_num_iterations = 50;
- PowerSeriesExpansionPreconditioner preconditioner(
- isc_.get(), max_num_iterations, spse_tolerance, preconditioner_options_);
- Vector x(num_f_cols_), y(num_f_cols_);
- for (int i = 0; i < num_f_cols_; i++) {
- x.setZero();
- x(i) = 1.0;
- y.setZero();
- preconditioner.RightMultiplyAndAccumulate(x.data(), y.data());
- EXPECT_LT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon)
- << "Reference Schur complement inverse and its estimate via "
- "PowerSeriesExpansionPreconditioner differs in "
- << i
- << " column.\nreference : " << sc_inverse_expected_.col(i).transpose()
- << "\nestimated: " << y.transpose();
- }
- }
- TEST_F(PowerSeriesExpansionPreconditionerTest,
- InverseValidPreconditionerMaxIterations) {
- const double spse_tolerance = 0;
- const int max_num_iterations = 50;
- PowerSeriesExpansionPreconditioner preconditioner_fixed_n_iterations(
- isc_.get(), max_num_iterations, spse_tolerance, preconditioner_options_);
- Vector x(num_f_cols_), y(num_f_cols_);
- for (int i = 0; i < num_f_cols_; i++) {
- x.setZero();
- x(i) = 1.0;
- y.setZero();
- preconditioner_fixed_n_iterations.RightMultiplyAndAccumulate(x.data(),
- y.data());
- EXPECT_LT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon)
- << "Reference Schur complement inverse and its estimate via "
- "PowerSeriesExpansionPreconditioner differs in "
- << i
- << " column.\nreference : " << sc_inverse_expected_.col(i).transpose()
- << "\nestimated: " << y.transpose();
- }
- }
- TEST_F(PowerSeriesExpansionPreconditionerTest,
- InverseInvalidBadPreconditionerTolerance) {
- const double spse_tolerance = 1 / kEpsilon;
- const int max_num_iterations = 50;
- PowerSeriesExpansionPreconditioner preconditioner_bad_tolerance(
- isc_.get(), max_num_iterations, spse_tolerance, preconditioner_options_);
- Vector x(num_f_cols_), y(num_f_cols_);
- for (int i = 0; i < num_f_cols_; i++) {
- x.setZero();
- x(i) = 1.0;
- y.setZero();
- preconditioner_bad_tolerance.RightMultiplyAndAccumulate(x.data(), y.data());
- EXPECT_GT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon)
- << "Reference Schur complement inverse and its estimate via "
- "PowerSeriesExpansionPreconditioner are too similar, tolerance "
- "stopping criteria failed.";
- }
- }
- TEST_F(PowerSeriesExpansionPreconditionerTest,
- InverseInvalidBadPreconditionerMaxIterations) {
- const double spse_tolerance = kEpsilon;
- const int max_num_iterations = 1;
- PowerSeriesExpansionPreconditioner preconditioner_bad_iterations_limit(
- isc_.get(), max_num_iterations, spse_tolerance, preconditioner_options_);
- Vector x(num_f_cols_), y(num_f_cols_);
- for (int i = 0; i < num_f_cols_; i++) {
- x.setZero();
- x(i) = 1.0;
- y.setZero();
- preconditioner_bad_iterations_limit.RightMultiplyAndAccumulate(x.data(),
- y.data());
- EXPECT_GT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon)
- << "Reference Schur complement inverse and its estimate via "
- "PowerSeriesExpansionPreconditioner are too similar, maximum "
- "iterations stopping criteria failed.";
- }
- }
- } // namespace ceres::internal
|