123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- #include <algorithm>
- #include "benchmark/benchmark.h"
- #include "ceres/eigen_vector_ops.h"
- #include "ceres/parallel_for.h"
- namespace ceres::internal {
- // Older versions of benchmark library (for example, one shipped with
- // ubuntu 20.04) do not support range generation and range products
- #define VECTOR_SIZES(num_threads) \
- Args({1 << 7, num_threads}) \
- ->Args({1 << 8, num_threads}) \
- ->Args({1 << 9, num_threads}) \
- ->Args({1 << 10, num_threads}) \
- ->Args({1 << 11, num_threads}) \
- ->Args({1 << 12, num_threads}) \
- ->Args({1 << 13, num_threads}) \
- ->Args({1 << 14, num_threads}) \
- ->Args({1 << 15, num_threads}) \
- ->Args({1 << 16, num_threads}) \
- ->Args({1 << 17, num_threads}) \
- ->Args({1 << 18, num_threads}) \
- ->Args({1 << 19, num_threads}) \
- ->Args({1 << 20, num_threads}) \
- ->Args({1 << 21, num_threads}) \
- ->Args({1 << 22, num_threads}) \
- ->Args({1 << 23, num_threads})
- #define VECTOR_SIZE_THREADS \
- VECTOR_SIZES(1) \
- ->VECTOR_SIZES(2) \
- ->VECTOR_SIZES(4) \
- ->VECTOR_SIZES(8) \
- ->VECTOR_SIZES(16)
- static void SetZero(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- Vector x = Vector::Random(kVectorSize);
- for (auto _ : state) {
- x.setZero();
- }
- CHECK_EQ(x.squaredNorm(), 0.);
- }
- BENCHMARK(SetZero)->VECTOR_SIZES(1);
- static void SetZeroParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- Vector x = Vector::Random(kVectorSize);
- for (auto _ : state) {
- ParallelSetZero(&context, num_threads, x);
- }
- CHECK_EQ(x.squaredNorm(), 0.);
- }
- BENCHMARK(SetZeroParallel)->VECTOR_SIZE_THREADS;
- static void Negate(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- Vector x = Vector::Random(kVectorSize).normalized();
- const Vector x_init = x;
- for (auto _ : state) {
- x = -x;
- }
- CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0);
- }
- BENCHMARK(Negate)->VECTOR_SIZES(1);
- static void NegateParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- Vector x = Vector::Random(kVectorSize).normalized();
- const Vector x_init = x;
- for (auto _ : state) {
- ParallelAssign(&context, num_threads, x, -x);
- }
- CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0);
- }
- BENCHMARK(NegateParallel)->VECTOR_SIZE_THREADS;
- static void Assign(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- Vector x = Vector::Random(kVectorSize);
- Vector y = Vector(kVectorSize);
- for (auto _ : state) {
- y.block(0, 0, kVectorSize, 1) = x.block(0, 0, kVectorSize, 1);
- }
- CHECK_EQ((y - x).squaredNorm(), 0.);
- }
- BENCHMARK(Assign)->VECTOR_SIZES(1);
- static void AssignParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- Vector x = Vector::Random(kVectorSize);
- Vector y = Vector(kVectorSize);
- for (auto _ : state) {
- ParallelAssign(&context, num_threads, y, x);
- }
- CHECK_EQ((y - x).squaredNorm(), 0.);
- }
- BENCHMARK(AssignParallel)->VECTOR_SIZE_THREADS;
- static void D2X(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const Vector x = Vector::Random(kVectorSize);
- const Vector D = Vector::Random(kVectorSize);
- Vector y = Vector::Zero(kVectorSize);
- for (auto _ : state) {
- y = D.array().square() * x.array();
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- BENCHMARK(D2X)->VECTOR_SIZES(1);
- static void D2XParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- const Vector x = Vector::Random(kVectorSize);
- const Vector D = Vector::Random(kVectorSize);
- Vector y = Vector(kVectorSize);
- for (auto _ : state) {
- ParallelAssign(&context, num_threads, y, D.array().square() * x.array());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- BENCHMARK(D2XParallel)->VECTOR_SIZE_THREADS;
- static void DivideSqrt(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- Vector diagonal = Vector::Random(kVectorSize).array().abs();
- const double radius = 0.5;
- for (auto _ : state) {
- diagonal = (diagonal / radius).array().sqrt();
- }
- CHECK_GT(diagonal.squaredNorm(), 0.);
- }
- BENCHMARK(DivideSqrt)->VECTOR_SIZES(1);
- static void DivideSqrtParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- Vector diagonal = Vector::Random(kVectorSize).array().abs();
- const double radius = 0.5;
- for (auto _ : state) {
- ParallelAssign(
- &context, num_threads, diagonal, (diagonal / radius).cwiseSqrt());
- }
- CHECK_GT(diagonal.squaredNorm(), 0.);
- }
- BENCHMARK(DivideSqrtParallel)->VECTOR_SIZE_THREADS;
- static void Clamp(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- Vector diagonal = Vector::Random(kVectorSize);
- const double min = -0.5;
- const double max = 0.5;
- for (auto _ : state) {
- for (int i = 0; i < kVectorSize; ++i) {
- diagonal[i] = std::min(std::max(diagonal[i], min), max);
- }
- }
- CHECK_LE(diagonal.maxCoeff(), 0.5);
- CHECK_GE(diagonal.minCoeff(), -0.5);
- }
- BENCHMARK(Clamp)->VECTOR_SIZES(1);
- static void ClampParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- Vector diagonal = Vector::Random(kVectorSize);
- const double min = -0.5;
- const double max = 0.5;
- for (auto _ : state) {
- ParallelAssign(
- &context, num_threads, diagonal, diagonal.array().max(min).min(max));
- }
- CHECK_LE(diagonal.maxCoeff(), 0.5);
- CHECK_GE(diagonal.minCoeff(), -0.5);
- }
- BENCHMARK(ClampParallel)->VECTOR_SIZE_THREADS;
- static void Norm(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const Vector x = Vector::Random(kVectorSize);
- double total = 0.;
- for (auto _ : state) {
- total += x.norm();
- }
- CHECK_GT(total, 0.);
- }
- BENCHMARK(Norm)->VECTOR_SIZES(1);
- static void NormParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- const Vector x = Vector::Random(kVectorSize);
- double total = 0.;
- for (auto _ : state) {
- total += Norm(x, &context, num_threads);
- }
- CHECK_GT(total, 0.);
- }
- BENCHMARK(NormParallel)->VECTOR_SIZE_THREADS;
- static void Dot(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const Vector x = Vector::Random(kVectorSize);
- const Vector y = Vector::Random(kVectorSize);
- double total = 0.;
- for (auto _ : state) {
- total += x.dot(y);
- }
- CHECK_NE(total, 0.);
- }
- BENCHMARK(Dot)->VECTOR_SIZES(1);
- static void DotParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- const Vector x = Vector::Random(kVectorSize);
- const Vector y = Vector::Random(kVectorSize);
- double total = 0.;
- for (auto _ : state) {
- total += Dot(x, y, &context, num_threads);
- }
- CHECK_NE(total, 0.);
- }
- BENCHMARK(DotParallel)->VECTOR_SIZE_THREADS;
- static void Axpby(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const Vector x = Vector::Random(kVectorSize);
- const Vector y = Vector::Random(kVectorSize);
- Vector z = Vector::Zero(kVectorSize);
- const double a = 3.1415;
- const double b = 1.2345;
- for (auto _ : state) {
- z = a * x + b * y;
- }
- CHECK_GT(z.squaredNorm(), 0.);
- }
- BENCHMARK(Axpby)->VECTOR_SIZES(1);
- static void AxpbyParallel(benchmark::State& state) {
- const int kVectorSize = static_cast<int>(state.range(0));
- const int num_threads = static_cast<int>(state.range(1));
- ContextImpl context;
- context.EnsureMinimumThreads(num_threads);
- const Vector x = Vector::Random(kVectorSize);
- const Vector y = Vector::Random(kVectorSize);
- Vector z = Vector::Zero(kVectorSize);
- const double a = 3.1415;
- const double b = 1.2345;
- for (auto _ : state) {
- Axpby(a, x, b, y, z, &context, num_threads);
- }
- CHECK_GT(z.squaredNorm(), 0.);
- }
- BENCHMARK(AxpbyParallel)->VECTOR_SIZE_THREADS;
- } // namespace ceres::internal
- BENCHMARK_MAIN();
|