123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/normal_prior.h"
- #include <algorithm>
- #include <cstddef>
- #include <random>
- #include "ceres/internal/eigen.h"
- #include "gtest/gtest.h"
- namespace ceres {
- namespace internal {
- TEST(NormalPriorTest, ResidualAtRandomPosition) {
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(-1.0, 1.0);
- auto randu = [&distribution, &prng] { return distribution(prng); };
- for (int num_rows = 1; num_rows < 5; ++num_rows) {
- for (int num_cols = 1; num_cols < 5; ++num_cols) {
- Vector b(num_cols);
- b.setRandom();
- Matrix A(num_rows, num_cols);
- A.setRandom();
- auto* x = new double[num_cols];
- std::generate_n(x, num_cols, randu);
- auto* jacobian = new double[num_rows * num_cols];
- Vector residuals(num_rows);
- NormalPrior prior(A, b);
- prior.Evaluate(&x, residuals.data(), &jacobian);
- // Compare the norm of the residual
- double residual_diff_norm =
- (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
- EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
- // Compare the jacobians
- MatrixRef J(jacobian, num_rows, num_cols);
- double jacobian_diff_norm = (J - A).norm();
- EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10);
- delete[] x;
- delete[] jacobian;
- }
- }
- }
- TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) {
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(-1.0, 1.0);
- auto randu = [&distribution, &prng] { return distribution(prng); };
- for (int num_rows = 1; num_rows < 5; ++num_rows) {
- for (int num_cols = 1; num_cols < 5; ++num_cols) {
- Vector b(num_cols);
- b.setRandom();
- Matrix A(num_rows, num_cols);
- A.setRandom();
- auto* x = new double[num_cols];
- std::generate_n(x, num_cols, randu);
- double* jacobians[1];
- jacobians[0] = nullptr;
- Vector residuals(num_rows);
- NormalPrior prior(A, b);
- prior.Evaluate(&x, residuals.data(), jacobians);
- // Compare the norm of the residual
- double residual_diff_norm =
- (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
- EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
- prior.Evaluate(&x, residuals.data(), nullptr);
- // Compare the norm of the residual
- residual_diff_norm =
- (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
- EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
- delete[] x;
- }
- }
- }
- } // namespace internal
- } // namespace ceres
|