123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Limited memory positive definite approximation to the inverse
- // Hessian, using the LBFGS algorithm
- #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
- #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
- #include <list>
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/linear_operator.h"
- namespace ceres::internal {
- // LowRankInverseHessian is a positive definite approximation to the
- // Hessian using the limited memory variant of the
- // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
- // approximating the Hessian.
- //
- // Other update rules like the Davidon-Fletcher-Powell (DFP) are
- // possible, but the BFGS rule is considered the best performing one.
- //
- // The limited memory variant was developed by Nocedal and further
- // enhanced with scaling rule by Byrd, Nocedal and Schanbel.
- //
- // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
- // Storage". Mathematics of Computation 35 (151): 773-782.
- //
- // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
- // "Representations of Quasi-Newton Matrices and their use in
- // Limited Memory Methods". Mathematical Programming 63 (4):
- class CERES_NO_EXPORT LowRankInverseHessian final : public LinearOperator {
- public:
- // num_parameters is the row/column size of the Hessian.
- // max_num_corrections is the rank of the Hessian approximation.
- // use_approximate_eigenvalue_scaling controls whether the initial
- // inverse Hessian used during Right/LeftMultiplyAndAccumulate() is scaled by
- // the approximate eigenvalue of the true inverse Hessian at the
- // current operating point.
- // The approximation uses:
- // 2 * max_num_corrections * num_parameters + max_num_corrections
- // doubles.
- LowRankInverseHessian(int num_parameters,
- int max_num_corrections,
- bool use_approximate_eigenvalue_scaling);
- // Update the low rank approximation. delta_x is the change in the
- // domain of Hessian, and delta_gradient is the change in the
- // gradient. The update copies the delta_x and delta_gradient
- // vectors, and gets rid of the oldest delta_x and delta_gradient
- // vectors if the number of corrections is already equal to
- // max_num_corrections.
- bool Update(const Vector& delta_x, const Vector& delta_gradient);
- // LinearOperator interface
- void RightMultiplyAndAccumulate(const double* x, double* y) const final;
- void LeftMultiplyAndAccumulate(const double* x, double* y) const final {
- RightMultiplyAndAccumulate(x, y);
- }
- int num_rows() const final { return num_parameters_; }
- int num_cols() const final { return num_parameters_; }
- private:
- const int num_parameters_;
- const int max_num_corrections_;
- const bool use_approximate_eigenvalue_scaling_;
- double approximate_eigenvalue_scale_;
- ColMajorMatrix delta_x_history_;
- ColMajorMatrix delta_gradient_history_;
- Vector delta_x_dot_delta_gradient_;
- std::list<int> indices_;
- };
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
|