low_rank_inverse_hessian.h 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: sameeragarwal@google.com (Sameer Agarwal)
  30. //
  31. // Limited memory positive definite approximation to the inverse
  32. // Hessian, using the LBFGS algorithm
  33. #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
  34. #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
  35. #include <list>
  36. #include "ceres/internal/eigen.h"
  37. #include "ceres/internal/export.h"
  38. #include "ceres/linear_operator.h"
  39. namespace ceres::internal {
  40. // LowRankInverseHessian is a positive definite approximation to the
  41. // Hessian using the limited memory variant of the
  42. // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
  43. // approximating the Hessian.
  44. //
  45. // Other update rules like the Davidon-Fletcher-Powell (DFP) are
  46. // possible, but the BFGS rule is considered the best performing one.
  47. //
  48. // The limited memory variant was developed by Nocedal and further
  49. // enhanced with scaling rule by Byrd, Nocedal and Schanbel.
  50. //
  51. // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
  52. // Storage". Mathematics of Computation 35 (151): 773-782.
  53. //
  54. // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
  55. // "Representations of Quasi-Newton Matrices and their use in
  56. // Limited Memory Methods". Mathematical Programming 63 (4):
  57. class CERES_NO_EXPORT LowRankInverseHessian final : public LinearOperator {
  58. public:
  59. // num_parameters is the row/column size of the Hessian.
  60. // max_num_corrections is the rank of the Hessian approximation.
  61. // use_approximate_eigenvalue_scaling controls whether the initial
  62. // inverse Hessian used during Right/LeftMultiplyAndAccumulate() is scaled by
  63. // the approximate eigenvalue of the true inverse Hessian at the
  64. // current operating point.
  65. // The approximation uses:
  66. // 2 * max_num_corrections * num_parameters + max_num_corrections
  67. // doubles.
  68. LowRankInverseHessian(int num_parameters,
  69. int max_num_corrections,
  70. bool use_approximate_eigenvalue_scaling);
  71. // Update the low rank approximation. delta_x is the change in the
  72. // domain of Hessian, and delta_gradient is the change in the
  73. // gradient. The update copies the delta_x and delta_gradient
  74. // vectors, and gets rid of the oldest delta_x and delta_gradient
  75. // vectors if the number of corrections is already equal to
  76. // max_num_corrections.
  77. bool Update(const Vector& delta_x, const Vector& delta_gradient);
  78. // LinearOperator interface
  79. void RightMultiplyAndAccumulate(const double* x, double* y) const final;
  80. void LeftMultiplyAndAccumulate(const double* x, double* y) const final {
  81. RightMultiplyAndAccumulate(x, y);
  82. }
  83. int num_rows() const final { return num_parameters_; }
  84. int num_cols() const final { return num_parameters_; }
  85. private:
  86. const int num_parameters_;
  87. const int max_num_corrections_;
  88. const bool use_approximate_eigenvalue_scaling_;
  89. double approximate_eigenvalue_scale_;
  90. ColMajorMatrix delta_x_history_;
  91. ColMajorMatrix delta_gradient_history_;
  92. Vector delta_x_dot_delta_gradient_;
  93. std::list<int> indices_;
  94. };
  95. } // namespace ceres::internal
  96. #endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_