123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/low_rank_inverse_hessian.h"
- #include <list>
- #include "ceres/internal/eigen.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- // The (L)BFGS algorithm explicitly requires that the secant equation:
- //
- // B_{k+1} * s_k = y_k
- //
- // Is satisfied at each iteration, where B_{k+1} is the approximated
- // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
- // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
- // positive definite, this is equivalent to the condition:
- //
- // s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
- //
- // This condition would always be satisfied if the function was strictly
- // convex, alternatively, it is always satisfied provided that a Wolfe line
- // search is used (even if the function is not strictly convex). See [1]
- // (p138) for a proof.
- //
- // Although Ceres will always use a Wolfe line search when using (L)BFGS,
- // practical implementation considerations mean that the line search
- // may return a point that satisfies only the Armijo condition, and thus
- // could violate the Secant equation. As such, we will only use a step
- // to update the Hessian approximation if:
- //
- // s_k^T * y_k > tolerance
- //
- // It is important that tolerance is very small (and >=0), as otherwise we
- // might skip the update too often and fail to capture important curvature
- // information in the Hessian. For example going from 1e-10 -> 1e-14 improves
- // the NIST benchmark score from 43/54 to 53/54.
- //
- // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.
- //
- // TODO(alexs.mac): Consider using Damped BFGS update instead of
- // skipping update.
- const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14;
- LowRankInverseHessian::LowRankInverseHessian(
- int num_parameters,
- int max_num_corrections,
- bool use_approximate_eigenvalue_scaling)
- : num_parameters_(num_parameters),
- max_num_corrections_(max_num_corrections),
- use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
- approximate_eigenvalue_scale_(1.0),
- delta_x_history_(num_parameters, max_num_corrections),
- delta_gradient_history_(num_parameters, max_num_corrections),
- delta_x_dot_delta_gradient_(max_num_corrections) {}
- bool LowRankInverseHessian::Update(const Vector& delta_x,
- const Vector& delta_gradient) {
- const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
- if (delta_x_dot_delta_gradient <=
- kLBFGSSecantConditionHessianUpdateTolerance) {
- VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too "
- << "small: " << delta_x_dot_delta_gradient
- << ", tolerance: " << kLBFGSSecantConditionHessianUpdateTolerance
- << " (Secant condition).";
- return false;
- }
- int next = indices_.size();
- // Once the size of the list reaches max_num_corrections_, simulate
- // a circular buffer by removing the first element of the list and
- // making it the next position where the LBFGS history is stored.
- if (next == max_num_corrections_) {
- next = indices_.front();
- indices_.pop_front();
- }
- indices_.push_back(next);
- delta_x_history_.col(next) = delta_x;
- delta_gradient_history_.col(next) = delta_gradient;
- delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient;
- approximate_eigenvalue_scale_ =
- delta_x_dot_delta_gradient / delta_gradient.squaredNorm();
- return true;
- }
- void LowRankInverseHessian::RightMultiplyAndAccumulate(const double* x_ptr,
- double* y_ptr) const {
- ConstVectorRef gradient(x_ptr, num_parameters_);
- VectorRef search_direction(y_ptr, num_parameters_);
- search_direction = gradient;
- const int num_corrections = indices_.size();
- Vector alpha(num_corrections);
- for (auto it = indices_.rbegin(); it != indices_.rend(); ++it) {
- const double alpha_i = delta_x_history_.col(*it).dot(search_direction) /
- delta_x_dot_delta_gradient_(*it);
- search_direction -= alpha_i * delta_gradient_history_.col(*it);
- alpha(*it) = alpha_i;
- }
- if (use_approximate_eigenvalue_scaling_) {
- // Rescale the initial inverse Hessian approximation (H_0) to be iteratively
- // updated so that it is of similar 'size' to the true inverse Hessian along
- // the most recent search direction. As shown in [1]:
- //
- // \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) /
- // (delta_gradient_{k-1}' * delta_gradient_{k-1})
- //
- // Satisfies:
- //
- // (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1)
- //
- // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
- // the true Hessian (not the inverse) along the most recent search direction
- // respectively. Thus \gamma is an approximate eigenvalue of the true
- // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting
- // point that has a similar scale to the true inverse Hessian. This
- // technique is widely reported to often improve convergence, however this
- // is not universally true, particularly if there are errors in the initial
- // jacobians, or if there are significant differences in the sensitivity
- // of the problem to the parameters (i.e. the range of the magnitudes of
- // the components of the gradient is large).
- //
- // The original origin of this rescaling trick is somewhat unclear, the
- // earliest reference appears to be Oren [1], however it is widely discussed
- // without specific attribution in various texts including [2] (p143/178).
- //
- // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II:
- // Implementation and experiments, Management Science,
- // 20(5), 863-874, 1974.
- // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
- search_direction *= approximate_eigenvalue_scale_;
- VLOG(4) << "Applying approximate_eigenvalue_scale: "
- << approximate_eigenvalue_scale_ << " to initial inverse Hessian "
- << "approximation.";
- }
- for (const int i : indices_) {
- const double beta = delta_gradient_history_.col(i).dot(search_direction) /
- delta_x_dot_delta_gradient_(i);
- search_direction += delta_x_history_.col(i) * (alpha(i) - beta);
- }
- }
- } // namespace ceres::internal
|