123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Purpose: See .h file.
- #include "ceres/loss_function.h"
- #include <algorithm>
- #include <cmath>
- #include <cstddef>
- #include <limits>
- namespace ceres {
- LossFunction::~LossFunction() = default;
- void TrivialLoss::Evaluate(double s, double rho[3]) const {
- rho[0] = s;
- rho[1] = 1.0;
- rho[2] = 0.0;
- }
- void HuberLoss::Evaluate(double s, double rho[3]) const {
- if (s > b_) {
- // Outlier region.
- // 'r' is always positive.
- const double r = sqrt(s);
- rho[0] = 2.0 * a_ * r - b_;
- rho[1] = std::max(std::numeric_limits<double>::min(), a_ / r);
- rho[2] = -rho[1] / (2.0 * s);
- } else {
- // Inlier region.
- rho[0] = s;
- rho[1] = 1.0;
- rho[2] = 0.0;
- }
- }
- void SoftLOneLoss::Evaluate(double s, double rho[3]) const {
- const double sum = 1.0 + s * c_;
- const double tmp = sqrt(sum);
- // 'sum' and 'tmp' are always positive, assuming that 's' is.
- rho[0] = 2.0 * b_ * (tmp - 1.0);
- rho[1] = std::max(std::numeric_limits<double>::min(), 1.0 / tmp);
- rho[2] = -(c_ * rho[1]) / (2.0 * sum);
- }
- void CauchyLoss::Evaluate(double s, double rho[3]) const {
- const double sum = 1.0 + s * c_;
- const double inv = 1.0 / sum;
- // 'sum' and 'inv' are always positive, assuming that 's' is.
- rho[0] = b_ * log(sum);
- rho[1] = std::max(std::numeric_limits<double>::min(), inv);
- rho[2] = -c_ * (inv * inv);
- }
- void ArctanLoss::Evaluate(double s, double rho[3]) const {
- const double sum = 1 + s * s * b_;
- const double inv = 1 / sum;
- // 'sum' and 'inv' are always positive.
- rho[0] = a_ * atan2(s, a_);
- rho[1] = std::max(std::numeric_limits<double>::min(), inv);
- rho[2] = -2.0 * s * b_ * (inv * inv);
- }
- TolerantLoss::TolerantLoss(double a, double b)
- : a_(a), b_(b), c_(b * log(1.0 + exp(-a / b))) {
- CHECK_GE(a, 0.0);
- CHECK_GT(b, 0.0);
- }
- void TolerantLoss::Evaluate(double s, double rho[3]) const {
- const double x = (s - a_) / b_;
- // The basic equation is rho[0] = b ln(1 + e^x). However, if e^x is too
- // large, it will overflow. Since numerically 1 + e^x == e^x when the
- // x is greater than about ln(2^53) for doubles, beyond this threshold
- // we substitute x for ln(1 + e^x) as a numerically equivalent approximation.
- // ln(MathLimits<double>::kEpsilon).
- static constexpr double kLog2Pow53 = 36.7;
- if (x > kLog2Pow53) {
- rho[0] = s - a_ - c_;
- rho[1] = 1.0;
- rho[2] = 0.0;
- } else {
- const double e_x = exp(x);
- rho[0] = b_ * log(1.0 + e_x) - c_;
- rho[1] = std::max(std::numeric_limits<double>::min(), e_x / (1.0 + e_x));
- rho[2] = 0.5 / (b_ * (1.0 + cosh(x)));
- }
- }
- void TukeyLoss::Evaluate(double s, double* rho) const {
- if (s <= a_squared_) {
- // Inlier region.
- const double value = 1.0 - s / a_squared_;
- const double value_sq = value * value;
- rho[0] = a_squared_ / 3.0 * (1.0 - value_sq * value);
- rho[1] = value_sq;
- rho[2] = -2.0 / a_squared_ * value;
- } else {
- // Outlier region.
- rho[0] = a_squared_ / 3.0;
- rho[1] = 0.0;
- rho[2] = 0.0;
- }
- }
- ComposedLoss::ComposedLoss(const LossFunction* f,
- Ownership ownership_f,
- const LossFunction* g,
- Ownership ownership_g)
- : f_(f), g_(g), ownership_f_(ownership_f), ownership_g_(ownership_g) {
- CHECK(f_ != nullptr);
- CHECK(g_ != nullptr);
- }
- ComposedLoss::~ComposedLoss() {
- if (ownership_f_ == DO_NOT_TAKE_OWNERSHIP) {
- f_.release();
- }
- if (ownership_g_ == DO_NOT_TAKE_OWNERSHIP) {
- g_.release();
- }
- }
- void ComposedLoss::Evaluate(double s, double rho[3]) const {
- double rho_f[3], rho_g[3];
- g_->Evaluate(s, rho_g);
- f_->Evaluate(rho_g[0], rho_f);
- rho[0] = rho_f[0];
- // f'(g(s)) * g'(s).
- rho[1] = rho_f[1] * rho_g[1];
- // f''(g(s)) * g'(s) * g'(s) + f'(g(s)) * g''(s).
- rho[2] = rho_f[2] * rho_g[1] * rho_g[1] + rho_f[1] * rho_g[2];
- }
- void ScaledLoss::Evaluate(double s, double rho[3]) const {
- if (rho_.get() == nullptr) {
- rho[0] = a_ * s;
- rho[1] = a_;
- rho[2] = 0.0;
- } else {
- rho_->Evaluate(s, rho);
- rho[0] *= a_;
- rho[1] *= a_;
- rho[2] *= a_;
- }
- }
- } // namespace ceres
|