123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Generic loop for line search based optimization algorithms.
- //
- // This is primarily inspired by the minFunc packaged written by Mark
- // Schmidt.
- //
- // http://www.di.ens.fr/~mschmidt/Software/minFunc.html
- //
- // For details on the theory and implementation see "Numerical
- // Optimization" by Nocedal & Wright.
- #include "ceres/line_search_minimizer.h"
- #include <algorithm>
- #include <cmath>
- #include <cstdlib>
- #include <memory>
- #include <string>
- #include <vector>
- #include "Eigen/Dense"
- #include "ceres/array_utils.h"
- #include "ceres/evaluator.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/line_search.h"
- #include "ceres/line_search_direction.h"
- #include "ceres/stringprintf.h"
- #include "ceres/types.h"
- #include "ceres/wall_time.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- namespace {
- bool EvaluateGradientNorms(Evaluator* evaluator,
- const Vector& x,
- LineSearchMinimizer::State* state,
- std::string* message) {
- Vector negative_gradient = -state->gradient;
- Vector projected_gradient_step(x.size());
- if (!evaluator->Plus(
- x.data(), negative_gradient.data(), projected_gradient_step.data())) {
- *message = "projected_gradient_step = Plus(x, -gradient) failed.";
- return false;
- }
- state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm();
- state->gradient_max_norm =
- (x - projected_gradient_step).lpNorm<Eigen::Infinity>();
- return true;
- }
- } // namespace
- void LineSearchMinimizer::Minimize(const Minimizer::Options& options,
- double* parameters,
- Solver::Summary* summary) {
- const bool is_not_silent = !options.is_silent;
- double start_time = WallTimeInSeconds();
- double iteration_start_time = start_time;
- CHECK(options.evaluator != nullptr);
- Evaluator* evaluator = options.evaluator.get();
- const int num_parameters = evaluator->NumParameters();
- const int num_effective_parameters = evaluator->NumEffectiveParameters();
- summary->termination_type = NO_CONVERGENCE;
- summary->num_successful_steps = 0;
- summary->num_unsuccessful_steps = 0;
- VectorRef x(parameters, num_parameters);
- State current_state(num_parameters, num_effective_parameters);
- State previous_state(num_parameters, num_effective_parameters);
- IterationSummary iteration_summary;
- iteration_summary.iteration = 0;
- iteration_summary.step_is_valid = false;
- iteration_summary.step_is_successful = false;
- iteration_summary.cost_change = 0.0;
- iteration_summary.gradient_max_norm = 0.0;
- iteration_summary.gradient_norm = 0.0;
- iteration_summary.step_norm = 0.0;
- iteration_summary.linear_solver_iterations = 0;
- iteration_summary.step_solver_time_in_seconds = 0;
- // Do initial cost and gradient evaluation.
- if (!evaluator->Evaluate(x.data(),
- &(current_state.cost),
- nullptr,
- current_state.gradient.data(),
- nullptr)) {
- summary->termination_type = FAILURE;
- summary->message = "Initial cost and jacobian evaluation failed.";
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- return;
- }
- if (!EvaluateGradientNorms(evaluator, x, ¤t_state, &summary->message)) {
- summary->termination_type = FAILURE;
- summary->message =
- "Initial cost and jacobian evaluation failed. More details: " +
- summary->message;
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- return;
- }
- summary->initial_cost = current_state.cost + summary->fixed_cost;
- iteration_summary.cost = current_state.cost + summary->fixed_cost;
- iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
- iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
- if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
- summary->message =
- StringPrintf("Gradient tolerance reached. Gradient max norm: %e <= %e",
- iteration_summary.gradient_max_norm,
- options.gradient_tolerance);
- summary->termination_type = CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- return;
- }
- iteration_summary.iteration_time_in_seconds =
- WallTimeInSeconds() - iteration_start_time;
- iteration_summary.cumulative_time_in_seconds =
- WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds;
- summary->iterations.push_back(iteration_summary);
- LineSearchDirection::Options line_search_direction_options;
- line_search_direction_options.num_parameters = num_effective_parameters;
- line_search_direction_options.type = options.line_search_direction_type;
- line_search_direction_options.nonlinear_conjugate_gradient_type =
- options.nonlinear_conjugate_gradient_type;
- line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank;
- line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling =
- options.use_approximate_eigenvalue_bfgs_scaling;
- std::unique_ptr<LineSearchDirection> line_search_direction =
- LineSearchDirection::Create(line_search_direction_options);
- LineSearchFunction line_search_function(evaluator);
- LineSearch::Options line_search_options;
- line_search_options.interpolation_type =
- options.line_search_interpolation_type;
- line_search_options.min_step_size = options.min_line_search_step_size;
- line_search_options.sufficient_decrease =
- options.line_search_sufficient_function_decrease;
- line_search_options.max_step_contraction =
- options.max_line_search_step_contraction;
- line_search_options.min_step_contraction =
- options.min_line_search_step_contraction;
- line_search_options.max_num_iterations =
- options.max_num_line_search_step_size_iterations;
- line_search_options.sufficient_curvature_decrease =
- options.line_search_sufficient_curvature_decrease;
- line_search_options.max_step_expansion =
- options.max_line_search_step_expansion;
- line_search_options.is_silent = options.is_silent;
- line_search_options.function = &line_search_function;
- std::unique_ptr<LineSearch> line_search(LineSearch::Create(
- options.line_search_type, line_search_options, &summary->message));
- if (line_search.get() == nullptr) {
- summary->termination_type = FAILURE;
- if (is_not_silent) {
- LOG(ERROR) << "Terminating: " << summary->message;
- }
- return;
- }
- LineSearch::Summary line_search_summary;
- int num_line_search_direction_restarts = 0;
- while (true) {
- if (!RunCallbacks(options, iteration_summary, summary)) {
- break;
- }
- iteration_start_time = WallTimeInSeconds();
- if (iteration_summary.iteration >= options.max_num_iterations) {
- summary->message = "Maximum number of iterations reached.";
- summary->termination_type = NO_CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- break;
- }
- const double total_solver_time = iteration_start_time - start_time +
- summary->preprocessor_time_in_seconds;
- if (total_solver_time >= options.max_solver_time_in_seconds) {
- summary->message = "Maximum solver time reached.";
- summary->termination_type = NO_CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- break;
- }
- iteration_summary = IterationSummary();
- iteration_summary.iteration = summary->iterations.back().iteration + 1;
- iteration_summary.step_is_valid = false;
- iteration_summary.step_is_successful = false;
- bool line_search_status = true;
- if (iteration_summary.iteration == 1) {
- current_state.search_direction = -current_state.gradient;
- } else {
- line_search_status = line_search_direction->NextDirection(
- previous_state, current_state, ¤t_state.search_direction);
- }
- if (!line_search_status &&
- num_line_search_direction_restarts >=
- options.max_num_line_search_direction_restarts) {
- // Line search direction failed to generate a new direction, and we
- // have already reached our specified maximum number of restarts,
- // terminate optimization.
- summary->message = StringPrintf(
- "Line search direction failure: specified "
- "max_num_line_search_direction_restarts: %d reached.",
- options.max_num_line_search_direction_restarts);
- summary->termination_type = FAILURE;
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- break;
- } else if (!line_search_status) {
- // Restart line search direction with gradient descent on first iteration
- // as we have not yet reached our maximum number of restarts.
- CHECK_LT(num_line_search_direction_restarts,
- options.max_num_line_search_direction_restarts);
- ++num_line_search_direction_restarts;
- if (is_not_silent) {
- LOG(WARNING) << "Line search direction algorithm: "
- << LineSearchDirectionTypeToString(
- options.line_search_direction_type)
- << ", failed to produce a valid new direction at "
- << "iteration: " << iteration_summary.iteration
- << ". Restarting, number of restarts: "
- << num_line_search_direction_restarts << " / "
- << options.max_num_line_search_direction_restarts
- << " [max].";
- }
- line_search_direction =
- LineSearchDirection::Create(line_search_direction_options);
- current_state.search_direction = -current_state.gradient;
- }
- line_search_function.Init(x, current_state.search_direction);
- current_state.directional_derivative =
- current_state.gradient.dot(current_state.search_direction);
- // TODO(sameeragarwal): Refactor this into its own object and add
- // explanations for the various choices.
- //
- // Note that we use !line_search_status to ensure that we treat cases when
- // we restarted the line search direction equivalently to the first
- // iteration.
- const double initial_step_size =
- (iteration_summary.iteration == 1 || !line_search_status)
- ? std::min(1.0, 1.0 / current_state.gradient_max_norm)
- : std::min(1.0,
- 2.0 * (current_state.cost - previous_state.cost) /
- current_state.directional_derivative);
- // By definition, we should only ever go forwards along the specified search
- // direction in a line search, most likely cause for this being violated
- // would be a numerical failure in the line search direction calculation.
- if (initial_step_size < 0.0) {
- summary->message = StringPrintf(
- "Numerical failure in line search, initial_step_size is "
- "negative: %.5e, directional_derivative: %.5e, "
- "(current_cost - previous_cost): %.5e",
- initial_step_size,
- current_state.directional_derivative,
- (current_state.cost - previous_state.cost));
- summary->termination_type = FAILURE;
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- break;
- }
- line_search->Search(initial_step_size,
- current_state.cost,
- current_state.directional_derivative,
- &line_search_summary);
- if (!line_search_summary.success) {
- summary->message = StringPrintf(
- "Numerical failure in line search, failed to find "
- "a valid step size, (did not run out of iterations) "
- "using initial_step_size: %.5e, initial_cost: %.5e, "
- "initial_gradient: %.5e.",
- initial_step_size,
- current_state.cost,
- current_state.directional_derivative);
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- summary->termination_type = FAILURE;
- break;
- }
- const FunctionSample& optimal_point = line_search_summary.optimal_point;
- CHECK(optimal_point.vector_x_is_valid)
- << "Congratulations, you found a bug in Ceres. Please report it.";
- current_state.step_size = optimal_point.x;
- previous_state = current_state;
- iteration_summary.step_solver_time_in_seconds =
- WallTimeInSeconds() - iteration_start_time;
- if (optimal_point.vector_gradient_is_valid) {
- current_state.cost = optimal_point.value;
- current_state.gradient = optimal_point.vector_gradient;
- } else {
- Evaluator::EvaluateOptions evaluate_options;
- evaluate_options.new_evaluation_point = false;
- if (!evaluator->Evaluate(evaluate_options,
- optimal_point.vector_x.data(),
- &(current_state.cost),
- nullptr,
- current_state.gradient.data(),
- nullptr)) {
- summary->termination_type = FAILURE;
- summary->message = "Cost and jacobian evaluation failed.";
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- return;
- }
- }
- if (!EvaluateGradientNorms(evaluator,
- optimal_point.vector_x,
- ¤t_state,
- &summary->message)) {
- summary->termination_type = FAILURE;
- summary->message =
- "Step failed to evaluate. This should not happen as the step was "
- "valid when it was selected by the line search. More details: " +
- summary->message;
- if (is_not_silent) {
- LOG(WARNING) << "Terminating: " << summary->message;
- }
- break;
- }
- // Compute the norm of the step in the ambient space.
- iteration_summary.step_norm = (optimal_point.vector_x - x).norm();
- const double x_norm = x.norm();
- x = optimal_point.vector_x;
- iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
- iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
- iteration_summary.cost_change = previous_state.cost - current_state.cost;
- iteration_summary.cost = current_state.cost + summary->fixed_cost;
- iteration_summary.step_is_valid = true;
- iteration_summary.step_is_successful = true;
- iteration_summary.step_size = current_state.step_size;
- iteration_summary.line_search_function_evaluations =
- line_search_summary.num_function_evaluations;
- iteration_summary.line_search_gradient_evaluations =
- line_search_summary.num_gradient_evaluations;
- iteration_summary.line_search_iterations =
- line_search_summary.num_iterations;
- iteration_summary.iteration_time_in_seconds =
- WallTimeInSeconds() - iteration_start_time;
- iteration_summary.cumulative_time_in_seconds =
- WallTimeInSeconds() - start_time +
- summary->preprocessor_time_in_seconds;
- summary->iterations.push_back(iteration_summary);
- // Iterations inside the line search algorithm are considered
- // 'steps' in the broader context, to distinguish these inner
- // iterations from from the outer iterations of the line search
- // minimizer. The number of line search steps is the total number
- // of inner line search iterations (or steps) across the entire
- // minimization.
- summary->num_line_search_steps += line_search_summary.num_iterations;
- summary->line_search_cost_evaluation_time_in_seconds +=
- line_search_summary.cost_evaluation_time_in_seconds;
- summary->line_search_gradient_evaluation_time_in_seconds +=
- line_search_summary.gradient_evaluation_time_in_seconds;
- summary->line_search_polynomial_minimization_time_in_seconds +=
- line_search_summary.polynomial_minimization_time_in_seconds;
- summary->line_search_total_time_in_seconds +=
- line_search_summary.total_time_in_seconds;
- ++summary->num_successful_steps;
- const double step_size_tolerance =
- options.parameter_tolerance * (x_norm + options.parameter_tolerance);
- if (iteration_summary.step_norm <= step_size_tolerance) {
- summary->message = StringPrintf(
- "Parameter tolerance reached. "
- "Relative step_norm: %e <= %e.",
- (iteration_summary.step_norm /
- (x_norm + options.parameter_tolerance)),
- options.parameter_tolerance);
- summary->termination_type = CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- return;
- }
- if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
- summary->message = StringPrintf(
- "Gradient tolerance reached. "
- "Gradient max norm: %e <= %e",
- iteration_summary.gradient_max_norm,
- options.gradient_tolerance);
- summary->termination_type = CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- break;
- }
- const double absolute_function_tolerance =
- options.function_tolerance * std::abs(previous_state.cost);
- if (std::abs(iteration_summary.cost_change) <=
- absolute_function_tolerance) {
- summary->message = StringPrintf(
- "Function tolerance reached. "
- "|cost_change|/cost: %e <= %e",
- std::abs(iteration_summary.cost_change) / previous_state.cost,
- options.function_tolerance);
- summary->termination_type = CONVERGENCE;
- if (is_not_silent) {
- VLOG(1) << "Terminating: " << summary->message;
- }
- break;
- }
- }
- }
- } // namespace ceres::internal
|