123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/line_search_direction.h"
- #include <memory>
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/line_search_minimizer.h"
- #include "ceres/low_rank_inverse_hessian.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- class CERES_NO_EXPORT SteepestDescent final : public LineSearchDirection {
- public:
- bool NextDirection(const LineSearchMinimizer::State& /*previous*/,
- const LineSearchMinimizer::State& current,
- Vector* search_direction) override {
- *search_direction = -current.gradient;
- return true;
- }
- };
- class CERES_NO_EXPORT NonlinearConjugateGradient final
- : public LineSearchDirection {
- public:
- NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
- const double function_tolerance)
- : type_(type), function_tolerance_(function_tolerance) {}
- bool NextDirection(const LineSearchMinimizer::State& previous,
- const LineSearchMinimizer::State& current,
- Vector* search_direction) override {
- double beta = 0.0;
- Vector gradient_change;
- switch (type_) {
- case FLETCHER_REEVES:
- beta = current.gradient_squared_norm / previous.gradient_squared_norm;
- break;
- case POLAK_RIBIERE:
- gradient_change = current.gradient - previous.gradient;
- beta = (current.gradient.dot(gradient_change) /
- previous.gradient_squared_norm);
- break;
- case HESTENES_STIEFEL:
- gradient_change = current.gradient - previous.gradient;
- beta = (current.gradient.dot(gradient_change) /
- previous.search_direction.dot(gradient_change));
- break;
- default:
- LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
- }
- *search_direction = -current.gradient + beta * previous.search_direction;
- const double directional_derivative =
- current.gradient.dot(*search_direction);
- if (directional_derivative > -function_tolerance_) {
- LOG(WARNING) << "Restarting non-linear conjugate gradients: "
- << directional_derivative;
- *search_direction = -current.gradient;
- }
- return true;
- }
- private:
- const NonlinearConjugateGradientType type_;
- const double function_tolerance_;
- };
- class CERES_NO_EXPORT LBFGS final : public LineSearchDirection {
- public:
- LBFGS(const int num_parameters,
- const int max_lbfgs_rank,
- const bool use_approximate_eigenvalue_bfgs_scaling)
- : low_rank_inverse_hessian_(num_parameters,
- max_lbfgs_rank,
- use_approximate_eigenvalue_bfgs_scaling),
- is_positive_definite_(true) {}
- bool NextDirection(const LineSearchMinimizer::State& previous,
- const LineSearchMinimizer::State& current,
- Vector* search_direction) override {
- CHECK(is_positive_definite_)
- << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
- << "approximation has become indefinite, please contact the "
- << "developers!";
- low_rank_inverse_hessian_.Update(
- previous.search_direction * previous.step_size,
- current.gradient - previous.gradient);
- search_direction->setZero();
- low_rank_inverse_hessian_.RightMultiplyAndAccumulate(
- current.gradient.data(), search_direction->data());
- *search_direction *= -1.0;
- if (search_direction->dot(current.gradient) >= 0.0) {
- LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
- << "approximation is not positive definite, and thus "
- << "initial gradient for search direction is positive: "
- << search_direction->dot(current.gradient);
- is_positive_definite_ = false;
- return false;
- }
- return true;
- }
- private:
- LowRankInverseHessian low_rank_inverse_hessian_;
- bool is_positive_definite_;
- };
- class CERES_NO_EXPORT BFGS final : public LineSearchDirection {
- public:
- BFGS(const int num_parameters, const bool use_approximate_eigenvalue_scaling)
- : num_parameters_(num_parameters),
- use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
- initialized_(false),
- is_positive_definite_(true) {
- if (num_parameters_ >= 1000) {
- LOG(WARNING) << "BFGS line search being created with: " << num_parameters_
- << " parameters, this will allocate a dense approximate "
- << "inverse Hessian of size: " << num_parameters_ << " x "
- << num_parameters_
- << ", consider using the L-BFGS memory-efficient line "
- << "search direction instead.";
- }
- // Construct inverse_hessian_ after logging warning about size s.t. if the
- // allocation crashes us, the log will highlight what the issue likely was.
- inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
- }
- bool NextDirection(const LineSearchMinimizer::State& previous,
- const LineSearchMinimizer::State& current,
- Vector* search_direction) override {
- CHECK(is_positive_definite_)
- << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
- << "approximation has become indefinite, please contact the "
- << "developers!";
- const Vector delta_x = previous.search_direction * previous.step_size;
- const Vector delta_gradient = current.gradient - previous.gradient;
- const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
- // The (L)BFGS algorithm explicitly requires that the secant equation:
- //
- // B_{k+1} * s_k = y_k
- //
- // Is satisfied at each iteration, where B_{k+1} is the approximated
- // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
- // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
- // positive definite, this is equivalent to the condition:
- //
- // s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
- //
- // This condition would always be satisfied if the function was strictly
- // convex, alternatively, it is always satisfied provided that a Wolfe line
- // search is used (even if the function is not strictly convex). See [1]
- // (p138) for a proof.
- //
- // Although Ceres will always use a Wolfe line search when using (L)BFGS,
- // practical implementation considerations mean that the line search
- // may return a point that satisfies only the Armijo condition, and thus
- // could violate the Secant equation. As such, we will only use a step
- // to update the Hessian approximation if:
- //
- // s_k^T * y_k > tolerance
- //
- // It is important that tolerance is very small (and >=0), as otherwise we
- // might skip the update too often and fail to capture important curvature
- // information in the Hessian. For example going from 1e-10 -> 1e-14
- // improves the NIST benchmark score from 43/54 to 53/54.
- //
- // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.
- //
- // TODO(alexs.mac): Consider using Damped BFGS update instead of
- // skipping update.
- const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;
- if (delta_x_dot_delta_gradient <=
- kBFGSSecantConditionHessianUpdateTolerance) {
- VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
- << "small: " << delta_x_dot_delta_gradient
- << ", tolerance: " << kBFGSSecantConditionHessianUpdateTolerance
- << " (Secant condition).";
- } else {
- // Update dense inverse Hessian approximation.
- if (!initialized_ && use_approximate_eigenvalue_scaling_) {
- // Rescale the initial inverse Hessian approximation (H_0) to be
- // iteratively updated so that it is of similar 'size' to the true
- // inverse Hessian at the start point. As shown in [1]:
- //
- // \gamma = (delta_gradient_{0}' * delta_x_{0}) /
- // (delta_gradient_{0}' * delta_gradient_{0})
- //
- // Satisfies:
- //
- // (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
- //
- // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
- // of the true initial Hessian (not the inverse) respectively. Thus,
- // \gamma is an approximate eigenvalue of the true inverse Hessian, and
- // choosing: H_0 = I * \gamma will yield a starting point that has a
- // similar scale to the true inverse Hessian. This technique is widely
- // reported to often improve convergence, however this is not
- // universally true, particularly if there are errors in the initial
- // gradients, or if there are significant differences in the sensitivity
- // of the problem to the parameters (i.e. the range of the magnitudes of
- // the components of the gradient is large).
- //
- // The original origin of this rescaling trick is somewhat unclear, the
- // earliest reference appears to be Oren [1], however it is widely
- // discussed without specific attribution in various texts including
- // [2] (p143).
- //
- // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
- // Part II: Implementation and experiments, Management Science,
- // 20(5), 863-874, 1974.
- // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
- const double approximate_eigenvalue_scale =
- delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
- inverse_hessian_ *= approximate_eigenvalue_scale;
- VLOG(4) << "Applying approximate_eigenvalue_scale: "
- << approximate_eigenvalue_scale << " to initial inverse "
- << "Hessian approximation.";
- }
- initialized_ = true;
- // Efficient O(num_parameters^2) BFGS update [2].
- //
- // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
- // using: y_k = delta_gradient, s_k = delta_x:
- //
- // \rho_k = 1.0 / (s_k' * y_k)
- // V_k = I - \rho_k * y_k * s_k'
- // H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
- //
- // This update involves matrix, matrix products which naively O(N^3),
- // however we can exploit our knowledge that H_k is positive definite
- // and thus by defn. symmetric to reduce the cost of the update:
- //
- // Expanding the update above yields:
- //
- // H_k = H_{k-1} +
- // \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
- // (s_k * y_k' * H_k + H_k * y_k * s_k') )
- //
- // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
- // last term simplifies to (A + A'). Note that although A is not symmetric
- // (A + A') is symmetric. For ease of construction we also define
- // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
- // symmetric due to construction from: s_k * s_k'.
- //
- // Now we can write the BFGS update as:
- //
- // H_k = H_{k-1} + \rho_k * (B - (A + A'))
- // For efficiency, as H_k is by defn. symmetric, we will only maintain the
- // *lower* triangle of H_k (and all intermediary terms).
- const double rho_k = 1.0 / delta_x_dot_delta_gradient;
- // Calculate: A = s_k * y_k' * H_k
- Matrix A = delta_x * (delta_gradient.transpose() *
- inverse_hessian_.selfadjointView<Eigen::Lower>());
- // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
- const double delta_x_times_delta_x_transpose_scale_factor =
- (1.0 +
- (rho_k * delta_gradient.transpose() *
- inverse_hessian_.selfadjointView<Eigen::Lower>() * delta_gradient));
- // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
- Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
- B.selfadjointView<Eigen::Lower>().rankUpdate(
- delta_x, delta_x_times_delta_x_transpose_scale_factor);
- // Finally, update inverse Hessian approximation according to:
- // H_k = H_{k-1} + \rho_k * (B - (A + A')). Note that (A + A') is
- // symmetric, even though A is not.
- inverse_hessian_.triangularView<Eigen::Lower>() +=
- rho_k * (B - A - A.transpose());
- }
- *search_direction = inverse_hessian_.selfadjointView<Eigen::Lower>() *
- (-1.0 * current.gradient);
- if (search_direction->dot(current.gradient) >= 0.0) {
- LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
- << "approximation is not positive definite, and thus "
- << "initial gradient for search direction is positive: "
- << search_direction->dot(current.gradient);
- is_positive_definite_ = false;
- return false;
- }
- return true;
- }
- private:
- const int num_parameters_;
- const bool use_approximate_eigenvalue_scaling_;
- Matrix inverse_hessian_;
- bool initialized_;
- bool is_positive_definite_;
- };
- LineSearchDirection::~LineSearchDirection() = default;
- std::unique_ptr<LineSearchDirection> LineSearchDirection::Create(
- const LineSearchDirection::Options& options) {
- if (options.type == STEEPEST_DESCENT) {
- return std::make_unique<SteepestDescent>();
- }
- if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
- return std::make_unique<NonlinearConjugateGradient>(
- options.nonlinear_conjugate_gradient_type, options.function_tolerance);
- }
- if (options.type == ceres::LBFGS) {
- return std::make_unique<ceres::internal::LBFGS>(
- options.num_parameters,
- options.max_lbfgs_rank,
- options.use_approximate_eigenvalue_bfgs_scaling);
- }
- if (options.type == ceres::BFGS) {
- return std::make_unique<ceres::internal::BFGS>(
- options.num_parameters,
- options.use_approximate_eigenvalue_bfgs_scaling);
- }
- LOG(ERROR) << "Unknown line search direction type: " << options.type;
- return nullptr;
- }
- } // namespace ceres::internal
|