123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Interface for and implementation of various Line search algorithms.
- #ifndef CERES_INTERNAL_LINE_SEARCH_H_
- #define CERES_INTERNAL_LINE_SEARCH_H_
- #include <memory>
- #include <string>
- #include <vector>
- #include "ceres/function_sample.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/types.h"
- namespace ceres::internal {
- class Evaluator;
- class LineSearchFunction;
- // Line search is another name for a one dimensional optimization
- // algorithm. The name "line search" comes from the fact one
- // dimensional optimization problems that arise as subproblems of
- // general multidimensional optimization problems.
- //
- // While finding the exact minimum of a one dimensional function is
- // hard, instances of LineSearch find a point that satisfies a
- // sufficient decrease condition. Depending on the particular
- // condition used, we get a variety of different line search
- // algorithms, e.g., Armijo, Wolfe etc.
- class CERES_NO_EXPORT LineSearch {
- public:
- struct Summary;
- struct CERES_NO_EXPORT Options {
- // Degree of the polynomial used to approximate the objective
- // function.
- LineSearchInterpolationType interpolation_type = CUBIC;
- // Armijo and Wolfe line search parameters.
- // Solving the line search problem exactly is computationally
- // prohibitive. Fortunately, line search based optimization
- // algorithms can still guarantee convergence if instead of an
- // exact solution, the line search algorithm returns a solution
- // which decreases the value of the objective function
- // sufficiently. More precisely, we are looking for a step_size
- // s.t.
- //
- // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
- double sufficient_decrease = 1e-4;
- // In each iteration of the Armijo / Wolfe line search,
- //
- // new_step_size >= max_step_contraction * step_size
- //
- // Note that by definition, for contraction:
- //
- // 0 < max_step_contraction < min_step_contraction < 1
- //
- double max_step_contraction = 1e-3;
- // In each iteration of the Armijo / Wolfe line search,
- //
- // new_step_size <= min_step_contraction * step_size
- // Note that by definition, for contraction:
- //
- // 0 < max_step_contraction < min_step_contraction < 1
- //
- double min_step_contraction = 0.9;
- // If during the line search, the step_size falls below this
- // value, it is truncated to zero.
- double min_step_size = 1e-9;
- // Maximum number of trial step size iterations during each line search,
- // if a step size satisfying the search conditions cannot be found within
- // this number of trials, the line search will terminate.
- int max_num_iterations = 20;
- // Wolfe-specific line search parameters.
- // The strong Wolfe conditions consist of the Armijo sufficient
- // decrease condition, and an additional requirement that the
- // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
- // conditions) of the gradient along the search direction
- // decreases sufficiently. Precisely, this second condition
- // is that we seek a step_size s.t.
- //
- // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
- //
- // Where f() is the line search objective and f'() is the derivative
- // of f w.r.t step_size (d f / d step_size).
- double sufficient_curvature_decrease = 0.9;
- // During the bracketing phase of the Wolfe search, the step size is
- // increased until either a point satisfying the Wolfe conditions is
- // found, or an upper bound for a bracket containing a point satisfying
- // the conditions is found. Precisely, at each iteration of the
- // expansion:
- //
- // new_step_size <= max_step_expansion * step_size.
- //
- // By definition for expansion, max_step_expansion > 1.0.
- double max_step_expansion = 10;
- bool is_silent = false;
- // The one dimensional function that the line search algorithm
- // minimizes.
- LineSearchFunction* function = nullptr;
- };
- // Result of the line search.
- struct Summary {
- bool success = false;
- FunctionSample optimal_point;
- int num_function_evaluations = 0;
- int num_gradient_evaluations = 0;
- int num_iterations = 0;
- // Cumulative time spent evaluating the value of the cost function across
- // all iterations.
- double cost_evaluation_time_in_seconds = 0.0;
- // Cumulative time spent evaluating the gradient of the cost function across
- // all iterations.
- double gradient_evaluation_time_in_seconds = 0.0;
- // Cumulative time spent minimizing the interpolating polynomial to compute
- // the next candidate step size across all iterations.
- double polynomial_minimization_time_in_seconds = 0.0;
- double total_time_in_seconds = 0.0;
- std::string error;
- };
- explicit LineSearch(const LineSearch::Options& options);
- virtual ~LineSearch();
- static std::unique_ptr<LineSearch> Create(
- const LineSearchType line_search_type,
- const LineSearch::Options& options,
- std::string* error);
- // Perform the line search.
- //
- // step_size_estimate must be a positive number.
- //
- // initial_cost and initial_gradient are the values and gradient of
- // the function at zero.
- // summary must not be null and will contain the result of the line
- // search.
- //
- // Summary::success is true if a non-zero step size is found.
- void Search(double step_size_estimate,
- double initial_cost,
- double initial_gradient,
- Summary* summary) const;
- double InterpolatingPolynomialMinimizingStepSize(
- const LineSearchInterpolationType& interpolation_type,
- const FunctionSample& lowerbound_sample,
- const FunctionSample& previous_sample,
- const FunctionSample& current_sample,
- const double min_step_size,
- const double max_step_size) const;
- protected:
- const LineSearch::Options& options() const { return options_; }
- private:
- virtual void DoSearch(double step_size_estimate,
- double initial_cost,
- double initial_gradient,
- Summary* summary) const = 0;
- private:
- LineSearch::Options options_;
- };
- // An object used by the line search to access the function values
- // and gradient of the one dimensional function being optimized.
- //
- // In practice, this object provides access to the objective
- // function value and the directional derivative of the underlying
- // optimization problem along a specific search direction.
- class CERES_NO_EXPORT LineSearchFunction {
- public:
- explicit LineSearchFunction(Evaluator* evaluator);
- void Init(const Vector& position, const Vector& direction);
- // Evaluate the line search objective
- //
- // f(x) = p(position + x * direction)
- //
- // Where, p is the objective function of the general optimization
- // problem.
- //
- // evaluate_gradient controls whether the gradient will be evaluated
- // or not.
- //
- // On return output->*_is_valid indicate indicate whether the
- // corresponding fields have numerically valid values or not.
- void Evaluate(double x, bool evaluate_gradient, FunctionSample* output);
- double DirectionInfinityNorm() const;
- // Resets to now, the start point for the results from TimeStatistics().
- void ResetTimeStatistics();
- void TimeStatistics(double* cost_evaluation_time_in_seconds,
- double* gradient_evaluation_time_in_seconds) const;
- const Vector& position() const { return position_; }
- const Vector& direction() const { return direction_; }
- private:
- Evaluator* evaluator_;
- Vector position_;
- Vector direction_;
- // scaled_direction = x * direction_;
- Vector scaled_direction_;
- // We may not exclusively own the evaluator (e.g. in the Trust Region
- // minimizer), hence we need to save the initial evaluation durations for the
- // value & gradient to accurately determine the duration of the evaluations
- // we invoked. These are reset by a call to ResetTimeStatistics().
- double initial_evaluator_residual_time_in_seconds;
- double initial_evaluator_jacobian_time_in_seconds;
- };
- // Backtracking and interpolation based Armijo line search. This
- // implementation is based on the Armijo line search that ships in the
- // minFunc package by Mark Schmidt.
- //
- // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
- class CERES_NO_EXPORT ArmijoLineSearch final : public LineSearch {
- public:
- explicit ArmijoLineSearch(const LineSearch::Options& options);
- private:
- void DoSearch(double step_size_estimate,
- double initial_cost,
- double initial_gradient,
- Summary* summary) const final;
- };
- // Bracketing / Zoom Strong Wolfe condition line search. This implementation
- // is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
- // (p60-61) with inspiration from the WolfeLineSearch which ships with the
- // minFunc package by Mark Schmidt [2].
- //
- // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
- // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
- class CERES_NO_EXPORT WolfeLineSearch final : public LineSearch {
- public:
- explicit WolfeLineSearch(const LineSearch::Options& options);
- // Returns true iff either a valid point, or valid bracket are found.
- bool BracketingPhase(const FunctionSample& initial_position,
- const double step_size_estimate,
- FunctionSample* bracket_low,
- FunctionSample* bracket_high,
- bool* perform_zoom_search,
- Summary* summary) const;
- // Returns true iff final_line_sample satisfies strong Wolfe conditions.
- bool ZoomPhase(const FunctionSample& initial_position,
- FunctionSample bracket_low,
- FunctionSample bracket_high,
- FunctionSample* solution,
- Summary* summary) const;
- private:
- void DoSearch(double step_size_estimate,
- double initial_cost,
- double initial_gradient,
- Summary* summary) const final;
- };
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_LINE_SEARCH_H_
|