123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/line_search.h"
- #include <algorithm>
- #include <cmath>
- #include <iomanip>
- #include <map>
- #include <memory>
- #include <ostream> // NOLINT
- #include <string>
- #include <vector>
- #include "ceres/evaluator.h"
- #include "ceres/function_sample.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/map_util.h"
- #include "ceres/polynomial.h"
- #include "ceres/stringprintf.h"
- #include "ceres/wall_time.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- namespace {
- // Precision used for floating point values in error message output.
- const int kErrorMessageNumericPrecision = 8;
- } // namespace
- std::ostream& operator<<(std::ostream& os, const FunctionSample& sample);
- // Convenience stream operator for pushing FunctionSamples into log messages.
- std::ostream& operator<<(std::ostream& os, const FunctionSample& sample) {
- os << sample.ToDebugString();
- return os;
- }
- LineSearch::~LineSearch() = default;
- LineSearch::LineSearch(const LineSearch::Options& options)
- : options_(options) {}
- std::unique_ptr<LineSearch> LineSearch::Create(
- const LineSearchType line_search_type,
- const LineSearch::Options& options,
- std::string* error) {
- switch (line_search_type) {
- case ceres::ARMIJO:
- return std::make_unique<ArmijoLineSearch>(options);
- case ceres::WOLFE:
- return std::make_unique<WolfeLineSearch>(options);
- default:
- *error = std::string("Invalid line search algorithm type: ") +
- LineSearchTypeToString(line_search_type) +
- std::string(", unable to create line search.");
- }
- return nullptr;
- }
- LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
- : evaluator_(evaluator),
- position_(evaluator->NumParameters()),
- direction_(evaluator->NumEffectiveParameters()),
- scaled_direction_(evaluator->NumEffectiveParameters()),
- initial_evaluator_residual_time_in_seconds(0.0),
- initial_evaluator_jacobian_time_in_seconds(0.0) {}
- void LineSearchFunction::Init(const Vector& position, const Vector& direction) {
- position_ = position;
- direction_ = direction;
- }
- void LineSearchFunction::Evaluate(const double x,
- const bool evaluate_gradient,
- FunctionSample* output) {
- output->x = x;
- output->vector_x_is_valid = false;
- output->value_is_valid = false;
- output->gradient_is_valid = false;
- output->vector_gradient_is_valid = false;
- scaled_direction_ = output->x * direction_;
- output->vector_x.resize(position_.rows(), 1);
- if (!evaluator_->Plus(position_.data(),
- scaled_direction_.data(),
- output->vector_x.data())) {
- return;
- }
- output->vector_x_is_valid = true;
- double* gradient = nullptr;
- if (evaluate_gradient) {
- output->vector_gradient.resize(direction_.rows(), 1);
- gradient = output->vector_gradient.data();
- }
- const bool eval_status = evaluator_->Evaluate(
- output->vector_x.data(), &(output->value), nullptr, gradient, nullptr);
- if (!eval_status || !std::isfinite(output->value)) {
- return;
- }
- output->value_is_valid = true;
- if (!evaluate_gradient) {
- return;
- }
- output->gradient = direction_.dot(output->vector_gradient);
- if (!std::isfinite(output->gradient)) {
- return;
- }
- output->gradient_is_valid = true;
- output->vector_gradient_is_valid = true;
- }
- double LineSearchFunction::DirectionInfinityNorm() const {
- return direction_.lpNorm<Eigen::Infinity>();
- }
- void LineSearchFunction::ResetTimeStatistics() {
- const std::map<std::string, CallStatistics> evaluator_statistics =
- evaluator_->Statistics();
- initial_evaluator_residual_time_in_seconds =
- FindWithDefault(
- evaluator_statistics, "Evaluator::Residual", CallStatistics())
- .time;
- initial_evaluator_jacobian_time_in_seconds =
- FindWithDefault(
- evaluator_statistics, "Evaluator::Jacobian", CallStatistics())
- .time;
- }
- void LineSearchFunction::TimeStatistics(
- double* cost_evaluation_time_in_seconds,
- double* gradient_evaluation_time_in_seconds) const {
- const std::map<std::string, CallStatistics> evaluator_time_statistics =
- evaluator_->Statistics();
- *cost_evaluation_time_in_seconds =
- FindWithDefault(
- evaluator_time_statistics, "Evaluator::Residual", CallStatistics())
- .time -
- initial_evaluator_residual_time_in_seconds;
- // Strictly speaking this will slightly underestimate the time spent
- // evaluating the gradient of the line search univariate cost function as it
- // does not count the time spent performing the dot product with the direction
- // vector. However, this will typically be small by comparison, and also
- // allows direct subtraction of the timing information from the totals for
- // the evaluator returned in the solver summary.
- *gradient_evaluation_time_in_seconds =
- FindWithDefault(
- evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics())
- .time -
- initial_evaluator_jacobian_time_in_seconds;
- }
- void LineSearch::Search(double step_size_estimate,
- double initial_cost,
- double initial_gradient,
- Summary* summary) const {
- const double start_time = WallTimeInSeconds();
- CHECK(summary != nullptr);
- *summary = LineSearch::Summary();
- summary->cost_evaluation_time_in_seconds = 0.0;
- summary->gradient_evaluation_time_in_seconds = 0.0;
- summary->polynomial_minimization_time_in_seconds = 0.0;
- options().function->ResetTimeStatistics();
- this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
- options().function->TimeStatistics(
- &summary->cost_evaluation_time_in_seconds,
- &summary->gradient_evaluation_time_in_seconds);
- summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
- }
- // Returns step_size \in [min_step_size, max_step_size] which minimizes the
- // polynomial of degree defined by interpolation_type which interpolates all
- // of the provided samples with valid values.
- double LineSearch::InterpolatingPolynomialMinimizingStepSize(
- const LineSearchInterpolationType& interpolation_type,
- const FunctionSample& lowerbound,
- const FunctionSample& previous,
- const FunctionSample& current,
- const double min_step_size,
- const double max_step_size) const {
- if (!current.value_is_valid ||
- (interpolation_type == BISECTION && max_step_size <= current.x)) {
- // Either: sample is invalid; or we are using BISECTION and contracting
- // the step size.
- return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
- } else if (interpolation_type == BISECTION) {
- CHECK_GT(max_step_size, current.x);
- // We are expanding the search (during a Wolfe bracketing phase) using
- // BISECTION interpolation. Using BISECTION when trying to expand is
- // strictly speaking an oxymoron, but we define this to mean always taking
- // the maximum step size so that the Armijo & Wolfe implementations are
- // agnostic to the interpolation type.
- return max_step_size;
- }
- // Only check if lower-bound is valid here, where it is required
- // to avoid replicating current.value_is_valid == false
- // behaviour in WolfeLineSearch.
- CHECK(lowerbound.value_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: lower-bound sample for interpolation is invalid, "
- << "please contact the developers!, interpolation_type: "
- << LineSearchInterpolationTypeToString(interpolation_type)
- << ", lowerbound: " << lowerbound << ", previous: " << previous
- << ", current: " << current;
- // Select step size by interpolating the function and gradient values
- // and minimizing the corresponding polynomial.
- std::vector<FunctionSample> samples;
- samples.push_back(lowerbound);
- if (interpolation_type == QUADRATIC) {
- // Two point interpolation using function values and the
- // gradient at the lower bound.
- samples.emplace_back(current.x, current.value);
- if (previous.value_is_valid) {
- // Three point interpolation, using function values and the
- // gradient at the lower bound.
- samples.emplace_back(previous.x, previous.value);
- }
- } else if (interpolation_type == CUBIC) {
- // Two point interpolation using the function values and the gradients.
- samples.push_back(current);
- if (previous.value_is_valid) {
- // Three point interpolation using the function values and
- // the gradients.
- samples.push_back(previous);
- }
- } else {
- LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
- << LineSearchInterpolationTypeToString(interpolation_type)
- << ", please contact the developers!";
- }
- double step_size = 0.0, unused_min_value = 0.0;
- MinimizeInterpolatingPolynomial(
- samples, min_step_size, max_step_size, &step_size, &unused_min_value);
- return step_size;
- }
- ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
- : LineSearch(options) {}
- void ArmijoLineSearch::DoSearch(const double step_size_estimate,
- const double initial_cost,
- const double initial_gradient,
- Summary* summary) const {
- CHECK_GE(step_size_estimate, 0.0);
- CHECK_GT(options().sufficient_decrease, 0.0);
- CHECK_LT(options().sufficient_decrease, 1.0);
- CHECK_GT(options().max_num_iterations, 0);
- LineSearchFunction* function = options().function;
- // Note initial_cost & initial_gradient are evaluated at step_size = 0,
- // not step_size_estimate, which is our starting guess.
- FunctionSample initial_position(0.0, initial_cost, initial_gradient);
- initial_position.vector_x = function->position();
- initial_position.vector_x_is_valid = true;
- const double descent_direction_max_norm = function->DirectionInfinityNorm();
- FunctionSample previous;
- FunctionSample current;
- // As the Armijo line search algorithm always uses the initial point, for
- // which both the function value and derivative are known, when fitting a
- // minimizing polynomial, we can fit up to a quadratic without requiring the
- // gradient at the current query point.
- const bool kEvaluateGradient = options().interpolation_type == CUBIC;
- ++summary->num_function_evaluations;
- if (kEvaluateGradient) {
- ++summary->num_gradient_evaluations;
- }
- function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
- while (!current.value_is_valid ||
- current.value > (initial_cost + options().sufficient_decrease *
- initial_gradient * current.x)) {
- // If current.value_is_valid is false, we treat it as if the cost at that
- // point is not large enough to satisfy the sufficient decrease condition.
- ++summary->num_iterations;
- if (summary->num_iterations >= options().max_num_iterations) {
- summary->error = StringPrintf(
- "Line search failed: Armijo failed to find a point "
- "satisfying the sufficient decrease condition within "
- "specified max_num_iterations: %d.",
- options().max_num_iterations);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return;
- }
- const double polynomial_minimization_start_time = WallTimeInSeconds();
- const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- initial_position,
- previous,
- current,
- (options().max_step_contraction * current.x),
- (options().min_step_contraction * current.x));
- summary->polynomial_minimization_time_in_seconds +=
- (WallTimeInSeconds() - polynomial_minimization_start_time);
- if (step_size * descent_direction_max_norm < options().min_step_size) {
- summary->error = StringPrintf(
- "Line search failed: step_size too small: %.5e "
- "with descent_direction_max_norm: %.5e.",
- step_size,
- descent_direction_max_norm);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return;
- }
- previous = current;
- ++summary->num_function_evaluations;
- if (kEvaluateGradient) {
- ++summary->num_gradient_evaluations;
- }
- function->Evaluate(step_size, kEvaluateGradient, ¤t);
- }
- summary->optimal_point = current;
- summary->success = true;
- }
- WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
- : LineSearch(options) {}
- void WolfeLineSearch::DoSearch(const double step_size_estimate,
- const double initial_cost,
- const double initial_gradient,
- Summary* summary) const {
- // All parameters should have been validated by the Solver, but as
- // invalid values would produce crazy nonsense, hard check them here.
- CHECK_GE(step_size_estimate, 0.0);
- CHECK_GT(options().sufficient_decrease, 0.0);
- CHECK_GT(options().sufficient_curvature_decrease,
- options().sufficient_decrease);
- CHECK_LT(options().sufficient_curvature_decrease, 1.0);
- CHECK_GT(options().max_step_expansion, 1.0);
- // Note initial_cost & initial_gradient are evaluated at step_size = 0,
- // not step_size_estimate, which is our starting guess.
- FunctionSample initial_position(0.0, initial_cost, initial_gradient);
- initial_position.vector_x = options().function->position();
- initial_position.vector_x_is_valid = true;
- bool do_zoom_search = false;
- // Important: The high/low in bracket_high & bracket_low refer to their
- // _function_ values, not their step sizes i.e. it is _not_ required that
- // bracket_low.x < bracket_high.x.
- FunctionSample solution, bracket_low, bracket_high;
- // Wolfe bracketing phase: Increases step_size until either it finds a point
- // that satisfies the (strong) Wolfe conditions, or an interval that brackets
- // step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
- // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
- // the strong Wolfe conditions if one of the following conditions are met:
- //
- // 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
- // 2. f(step_size_{k}) >= f(step_size_{k-1}).
- // 3. f'(step_size_{k}) >= 0.
- //
- // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
- // this special case, step_size monotonically increases during bracketing.
- if (!this->BracketingPhase(initial_position,
- step_size_estimate,
- &bracket_low,
- &bracket_high,
- &do_zoom_search,
- summary)) {
- // Failed to find either a valid point, a valid bracket satisfying the Wolfe
- // conditions, or even a step size > minimum tolerance satisfying the Armijo
- // condition.
- return;
- }
- if (!do_zoom_search) {
- // Either: Bracketing phase already found a point satisfying the strong
- // Wolfe conditions, thus no Zoom required.
- //
- // Or: Bracketing failed to find a valid bracket or a point satisfying the
- // strong Wolfe conditions within max_num_iterations, or whilst searching
- // shrank the bracket width until it was below our minimum tolerance.
- // As these are 'artificial' constraints, and we would otherwise fail to
- // produce a valid point when ArmijoLineSearch would succeed, we return the
- // point with the lowest cost found thus far which satisfies the Armijo
- // condition (but not the Wolfe conditions).
- summary->optimal_point = bracket_low;
- summary->success = true;
- return;
- }
- VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Starting line search zoom phase with bracket_low: " << bracket_low
- << ", bracket_high: " << bracket_high
- << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
- << ", bracket abs delta cost: "
- << fabs(bracket_low.value - bracket_high.value);
- // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
- // non-zero, finite width that should bracket step sizes which satisfy the
- // (strong) Wolfe conditions (before finding a step size that satisfies the
- // conditions). Zoom successively decreases the size of the interval until a
- // step size which satisfies the Wolfe conditions is found. The interval is
- // defined by bracket_low & bracket_high, which satisfy:
- //
- // 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
- // contains step sizes that satisfy the strong Wolfe conditions.
- // 2. bracket_low.x is of all the step sizes evaluated *which satisfied the
- // Armijo sufficient decrease condition*, the one which generated the
- // smallest function value, i.e. bracket_low.value <
- // f(all other steps satisfying Armijo).
- // - Note that this does _not_ (necessarily) mean that initially
- // bracket_low.value < bracket_high.value (although this is typical)
- // e.g. when bracket_low = initial_position, and bracket_high is the
- // first sample, and which does not satisfy the Armijo condition,
- // but still has bracket_high.value < initial_position.value.
- // 3. bracket_high is chosen after bracket_low, s.t.
- // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
- if (!this->ZoomPhase(
- initial_position, bracket_low, bracket_high, &solution, summary) &&
- !solution.value_is_valid) {
- // Failed to find a valid point (given the specified decrease parameters)
- // within the specified bracket.
- return;
- }
- // Ensure that if we ran out of iterations whilst zooming the bracket, or
- // shrank the bracket width to < tolerance and failed to find a point which
- // satisfies the strong Wolfe curvature condition, that we return the point
- // amongst those found thus far, which minimizes f() and satisfies the Armijo
- // condition.
- if (!solution.value_is_valid || solution.value > bracket_low.value) {
- summary->optimal_point = bracket_low;
- } else {
- summary->optimal_point = solution;
- }
- summary->success = true;
- }
- // Returns true if either:
- //
- // A termination condition satisfying the (strong) Wolfe bracketing conditions
- // is found:
- //
- // - A valid point, defined as a bracket of zero width [zoom not required].
- // - A valid bracket (of width > tolerance), [zoom required].
- //
- // Or, searching was stopped due to an 'artificial' constraint, i.e. not
- // a condition imposed / required by the underlying algorithm, but instead an
- // engineering / implementation consideration. But a step which exceeds the
- // minimum step size, and satisfies the Armijo condition was still found,
- // and should thus be used [zoom not required].
- //
- // Returns false if no step size > minimum step size was found which
- // satisfies at least the Armijo condition.
- bool WolfeLineSearch::BracketingPhase(const FunctionSample& initial_position,
- const double step_size_estimate,
- FunctionSample* bracket_low,
- FunctionSample* bracket_high,
- bool* do_zoom_search,
- Summary* summary) const {
- LineSearchFunction* function = options().function;
- FunctionSample previous = initial_position;
- FunctionSample current;
- const double descent_direction_max_norm = function->DirectionInfinityNorm();
- *do_zoom_search = false;
- *bracket_low = initial_position;
- // As we require the gradient to evaluate the Wolfe condition, we always
- // calculate it together with the value, irrespective of the interpolation
- // type. As opposed to only calculating the gradient after the Armijo
- // condition is satisfied, as the computational saving from this approach
- // would be slight (perhaps even negative due to the extra call). Also,
- // always calculating the value & gradient together protects against us
- // reporting invalid solutions if the cost function returns slightly different
- // function values when evaluated with / without gradients (due to numerical
- // issues).
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- const bool kEvaluateGradient = true;
- function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
- while (true) {
- ++summary->num_iterations;
- if (current.value_is_valid &&
- (current.value > (initial_position.value +
- options().sufficient_decrease *
- initial_position.gradient * current.x) ||
- (previous.value_is_valid && current.value > previous.value))) {
- // Bracket found: current step size violates Armijo sufficient decrease
- // condition, or has stepped past an inflection point of f() relative to
- // previous step size.
- *do_zoom_search = true;
- *bracket_low = previous;
- *bracket_high = current;
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Bracket found: current step (" << current.x
- << ") violates Armijo sufficient condition, or has passed an "
- << "inflection point of f() based on value.";
- break;
- }
- if (current.value_is_valid &&
- fabs(current.gradient) <= -options().sufficient_curvature_decrease *
- initial_position.gradient) {
- // Current step size satisfies the strong Wolfe conditions, and is thus a
- // valid termination point, therefore a Zoom not required.
- *bracket_low = current;
- *bracket_high = current;
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Bracketing phase found step size: " << current.x
- << ", satisfying strong Wolfe conditions, initial_position: "
- << initial_position << ", current: " << current;
- break;
- } else if (current.value_is_valid && current.gradient >= 0) {
- // Bracket found: current step size has stepped past an inflection point
- // of f(), but Armijo sufficient decrease is still satisfied and
- // f(current) is our best minimum thus far. Remember step size
- // monotonically increases, thus previous_step_size < current_step_size
- // even though f(previous) > f(current).
- *do_zoom_search = true;
- // Note inverse ordering from first bracket case.
- *bracket_low = current;
- *bracket_high = previous;
- VLOG(3) << "Bracket found: current step (" << current.x
- << ") satisfies Armijo, but has gradient >= 0, thus have passed "
- << "an inflection point of f().";
- break;
- } else if (current.value_is_valid &&
- fabs(current.x - previous.x) * descent_direction_max_norm <
- options().min_step_size) {
- // We have shrunk the search bracket to a width less than our tolerance,
- // and still not found either a point satisfying the strong Wolfe
- // conditions, or a valid bracket containing such a point. Stop searching
- // and set bracket_low to the size size amongst all those tested which
- // minimizes f() and satisfies the Armijo condition.
- if (!options().is_silent) {
- LOG(WARNING) << "Line search failed: Wolfe bracketing phase shrank "
- << "bracket width: " << fabs(current.x - previous.x)
- << ", to < tolerance: " << options().min_step_size
- << ", with descent_direction_max_norm: "
- << descent_direction_max_norm << ", and failed to find "
- << "a point satisfying the strong Wolfe conditions or a "
- << "bracketing containing such a point. Accepting "
- << "point found satisfying Armijo condition only, to "
- << "allow continuation.";
- }
- *bracket_low = current;
- break;
- } else if (summary->num_iterations >= options().max_num_iterations) {
- // Check num iterations bound here so that we always evaluate the
- // max_num_iterations-th iteration against all conditions, and
- // then perform no additional (unused) evaluations.
- summary->error = StringPrintf(
- "Line search failed: Wolfe bracketing phase failed to "
- "find a point satisfying strong Wolfe conditions, or a "
- "bracket containing such a point within specified "
- "max_num_iterations: %d",
- options().max_num_iterations);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- // Ensure that bracket_low is always set to the step size amongst all
- // those tested which minimizes f() and satisfies the Armijo condition
- // when we terminate due to the 'artificial' max_num_iterations condition.
- *bracket_low =
- current.value_is_valid && current.value < bracket_low->value
- ? current
- : *bracket_low;
- break;
- }
- // Either: f(current) is invalid; or, f(current) is valid, but does not
- // satisfy the strong Wolfe conditions itself, or the conditions for
- // being a boundary of a bracket.
- // If f(current) is valid, (but meets no criteria) expand the search by
- // increasing the step size. If f(current) is invalid, contract the step
- // size.
- //
- // In Nocedal & Wright [1] (p60), the step-size can only increase in the
- // bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k *
- // factor]. However this does not account for the function returning invalid
- // values which we support, in which case we need to contract the step size
- // whilst ensuring that we do not invert the bracket, i.e, we require that:
- // step_size_{k-1} <= step_size_{k+1} < step_size_k.
- const double min_step_size =
- current.value_is_valid ? current.x : previous.x;
- const double max_step_size =
- current.value_is_valid ? (current.x * options().max_step_expansion)
- : current.x;
- // We are performing 2-point interpolation only here, but the API of
- // InterpolatingPolynomialMinimizingStepSize() allows for up to
- // 3-point interpolation, so pad call with a sample with an invalid
- // value that will therefore be ignored.
- const FunctionSample unused_previous;
- DCHECK(!unused_previous.value_is_valid);
- // Contracts step size if f(current) is not valid.
- const double polynomial_minimization_start_time = WallTimeInSeconds();
- const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- previous,
- unused_previous,
- current,
- min_step_size,
- max_step_size);
- summary->polynomial_minimization_time_in_seconds +=
- (WallTimeInSeconds() - polynomial_minimization_start_time);
- if (step_size * descent_direction_max_norm < options().min_step_size) {
- summary->error = StringPrintf(
- "Line search failed: step_size too small: %.5e "
- "with descent_direction_max_norm: %.5e",
- step_size,
- descent_direction_max_norm);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return false;
- }
- // Only advance the lower boundary (in x) of the bracket if f(current)
- // is valid such that we can support contracting the step size when
- // f(current) is invalid without risking inverting the bracket in x, i.e.
- // prevent previous.x > current.x.
- previous = current.value_is_valid ? current : previous;
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- function->Evaluate(step_size, kEvaluateGradient, ¤t);
- }
- // Ensure that even if a valid bracket was found, we will only mark a zoom
- // as required if the bracket's width is greater than our minimum tolerance.
- if (*do_zoom_search &&
- fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm <
- options().min_step_size) {
- *do_zoom_search = false;
- }
- return true;
- }
- // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
- // on return false, if we stopped searching due to the 'artificial' condition of
- // reaching max_num_iterations, solution is the step size amongst all those
- // tested, which satisfied the Armijo decrease condition and minimized f().
- bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
- FunctionSample bracket_low,
- FunctionSample bracket_high,
- FunctionSample* solution,
- Summary* summary) const {
- LineSearchFunction* function = options().function;
- CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
- << "the developers!, initial_position: " << initial_position
- << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
- // We do not require bracket_high.gradient_is_valid as the gradient condition
- // for a valid bracket is only dependent upon bracket_low.gradient, and
- // in order to minimize jacobian evaluations, bracket_high.gradient may
- // not have been calculated (if bracket_high.value does not satisfy the
- // Armijo sufficient decrease condition and interpolation method does not
- // require it).
- //
- // We also do not require that: bracket_low.value < bracket_high.value,
- // although this is typical. This is to deal with the case when
- // bracket_low = initial_position, bracket_high is the first sample,
- // and bracket_high does not satisfy the Armijo condition, but still has
- // bracket_high.value < initial_position.value.
- CHECK(bracket_high.value_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
- << "contact the developers!, initial_position: " << initial_position
- << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
- if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
- // The third condition for a valid initial bracket:
- //
- // 3. bracket_high is chosen after bracket_low, s.t.
- // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
- //
- // is not satisfied. As this can happen when the users' cost function
- // returns inconsistent gradient values relative to the function values,
- // we do not CHECK_LT(), but we do stop processing and return an invalid
- // value.
- summary->error = StringPrintf(
- "Line search failed: Wolfe zoom phase passed a bracket "
- "which does not satisfy: bracket_low.gradient * "
- "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
- "with initial_position: %s, bracket_low: %s, bracket_high:"
- " %s, the most likely cause of which is the cost function "
- "returning inconsistent gradient & function values.",
- bracket_low.gradient * (bracket_high.x - bracket_low.x),
- initial_position.ToDebugString().c_str(),
- bracket_low.ToDebugString().c_str(),
- bracket_high.ToDebugString().c_str());
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- solution->value_is_valid = false;
- return false;
- }
- const int num_bracketing_iterations = summary->num_iterations;
- const double descent_direction_max_norm = function->DirectionInfinityNorm();
- while (true) {
- // Set solution to bracket_low, as it is our best step size (smallest f())
- // found thus far and satisfies the Armijo condition, even though it does
- // not satisfy the Wolfe condition.
- *solution = bracket_low;
- if (summary->num_iterations >= options().max_num_iterations) {
- summary->error = StringPrintf(
- "Line search failed: Wolfe zoom phase failed to "
- "find a point satisfying strong Wolfe conditions "
- "within specified max_num_iterations: %d, "
- "(num iterations taken for bracketing: %d).",
- options().max_num_iterations,
- num_bracketing_iterations);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return false;
- }
- if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm <
- options().min_step_size) {
- // Bracket width has been reduced below tolerance, and no point satisfying
- // the strong Wolfe conditions has been found.
- summary->error = StringPrintf(
- "Line search failed: Wolfe zoom bracket width: %.5e "
- "too small with descent_direction_max_norm: %.5e.",
- fabs(bracket_high.x - bracket_low.x),
- descent_direction_max_norm);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return false;
- }
- ++summary->num_iterations;
- // Polynomial interpolation requires inputs ordered according to step size,
- // not f(step size).
- const FunctionSample& lower_bound_step =
- bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
- const FunctionSample& upper_bound_step =
- bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
- // We are performing 2-point interpolation only here, but the API of
- // InterpolatingPolynomialMinimizingStepSize() allows for up to
- // 3-point interpolation, so pad call with a sample with an invalid
- // value that will therefore be ignored.
- const FunctionSample unused_previous;
- DCHECK(!unused_previous.value_is_valid);
- const double polynomial_minimization_start_time = WallTimeInSeconds();
- const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- lower_bound_step,
- unused_previous,
- upper_bound_step,
- lower_bound_step.x,
- upper_bound_step.x);
- summary->polynomial_minimization_time_in_seconds +=
- (WallTimeInSeconds() - polynomial_minimization_start_time);
- // No check on magnitude of step size being too small here as it is
- // lower-bounded by the initial bracket start point, which was valid.
- //
- // As we require the gradient to evaluate the Wolfe condition, we always
- // calculate it together with the value, irrespective of the interpolation
- // type. As opposed to only calculating the gradient after the Armijo
- // condition is satisfied, as the computational saving from this approach
- // would be slight (perhaps even negative due to the extra call). Also,
- // always calculating the value & gradient together protects against us
- // reporting invalid solutions if the cost function returns slightly
- // different function values when evaluated with / without gradients (due
- // to numerical issues).
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- const bool kEvaluateGradient = true;
- function->Evaluate(step_size, kEvaluateGradient, solution);
- if (!solution->value_is_valid || !solution->gradient_is_valid) {
- summary->error = StringPrintf(
- "Line search failed: Wolfe Zoom phase found "
- "step_size: %.5e, for which function is invalid, "
- "between low_step: %.5e and high_step: %.5e "
- "at which function is valid.",
- solution->x,
- bracket_low.x,
- bracket_high.x);
- if (!options().is_silent) {
- LOG(WARNING) << summary->error;
- }
- return false;
- }
- VLOG(3) << "Zoom iteration: "
- << summary->num_iterations - num_bracketing_iterations
- << ", bracket_low: " << bracket_low
- << ", bracket_high: " << bracket_high
- << ", minimizing solution: " << *solution;
- if ((solution->value > (initial_position.value +
- options().sufficient_decrease *
- initial_position.gradient * solution->x)) ||
- (solution->value >= bracket_low.value)) {
- // Armijo sufficient decrease not satisfied, or not better
- // than current lowest sample, use as new upper bound.
- bracket_high = *solution;
- continue;
- }
- // Armijo sufficient decrease satisfied, check strong Wolfe condition.
- if (fabs(solution->gradient) <=
- -options().sufficient_curvature_decrease * initial_position.gradient) {
- // Found a valid termination point satisfying strong Wolfe conditions.
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Zoom phase found step size: " << solution->x
- << ", satisfying strong Wolfe conditions.";
- break;
- } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
- bracket_high = bracket_low;
- }
- bracket_low = *solution;
- }
- // Solution contains a valid point which satisfies the strong Wolfe
- // conditions.
- return true;
- }
- } // namespace ceres::internal
|