| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2023 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/levenberg_marquardt_strategy.h"#include <algorithm>#include <cmath>#include "Eigen/Core"#include "ceres/array_utils.h"#include "ceres/internal/eigen.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/linear_solver.h"#include "ceres/parallel_vector_ops.h"#include "ceres/sparse_matrix.h"#include "ceres/trust_region_strategy.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres::internal {LevenbergMarquardtStrategy::LevenbergMarquardtStrategy(    const TrustRegionStrategy::Options& options)    : linear_solver_(options.linear_solver),      radius_(options.initial_radius),      max_radius_(options.max_radius),      min_diagonal_(options.min_lm_diagonal),      max_diagonal_(options.max_lm_diagonal),      decrease_factor_(2.0),      reuse_diagonal_(false),      context_(options.context),      num_threads_(options.num_threads) {  CHECK(linear_solver_ != nullptr);  CHECK_GT(min_diagonal_, 0.0);  CHECK_LE(min_diagonal_, max_diagonal_);  CHECK_GT(max_radius_, 0.0);}LevenbergMarquardtStrategy::~LevenbergMarquardtStrategy() = default;TrustRegionStrategy::Summary LevenbergMarquardtStrategy::ComputeStep(    const TrustRegionStrategy::PerSolveOptions& per_solve_options,    SparseMatrix* jacobian,    const double* residuals,    double* step) {  CHECK(jacobian != nullptr);  CHECK(residuals != nullptr);  CHECK(step != nullptr);  const int num_parameters = jacobian->num_cols();  if (!reuse_diagonal_) {    if (diagonal_.rows() != num_parameters) {      diagonal_.resize(num_parameters, 1);    }    jacobian->SquaredColumnNorm(diagonal_.data(), context_, num_threads_);    ParallelAssign(context_,                   num_threads_,                   diagonal_,                   diagonal_.array().max(min_diagonal_).min(max_diagonal_));  }  if (lm_diagonal_.size() == 0) {    lm_diagonal_.resize(num_parameters);  }  ParallelAssign(      context_, num_threads_, lm_diagonal_, (diagonal_ / radius_).cwiseSqrt());  LinearSolver::PerSolveOptions solve_options;  solve_options.D = lm_diagonal_.data();  solve_options.q_tolerance = per_solve_options.eta;  // Disable r_tolerance checking. Since we only care about  // termination via the q_tolerance. As Nash and Sofer show,  // r_tolerance based termination is essentially useless in  // Truncated Newton methods.  solve_options.r_tolerance = -1.0;  // Invalidate the output array lm_step, so that we can detect if  // the linear solver generated numerical garbage.  This is known  // to happen for the DENSE_QR and then DENSE_SCHUR solver when  // the Jacobian is severely rank deficient and mu is too small.  InvalidateArray(num_parameters, step);  // Instead of solving Jx = -r, solve Jy = r.  // Then x can be found as x = -y, but the inputs jacobian and residuals  // do not need to be modified.  LinearSolver::Summary linear_solver_summary =      linear_solver_->Solve(jacobian, residuals, solve_options, step);  if (linear_solver_summary.termination_type ==      LinearSolverTerminationType::FATAL_ERROR) {    LOG(WARNING) << "Linear solver fatal error: "                 << linear_solver_summary.message;  } else if (linear_solver_summary.termination_type ==             LinearSolverTerminationType::FAILURE) {    LOG(WARNING) << "Linear solver failure. Failed to compute a step: "                 << linear_solver_summary.message;  } else if (!IsArrayValid(num_parameters, step)) {    LOG(WARNING) << "Linear solver failure. Failed to compute a finite step.";    linear_solver_summary.termination_type =        LinearSolverTerminationType::FAILURE;  } else {    VectorRef step_vec(step, num_parameters);    ParallelAssign(context_, num_threads_, step_vec, -step_vec);  }  reuse_diagonal_ = true;  if (per_solve_options.dump_format_type == CONSOLE ||      (per_solve_options.dump_format_type != CONSOLE &&       !per_solve_options.dump_filename_base.empty())) {    if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,                                       per_solve_options.dump_format_type,                                       jacobian,                                       solve_options.D,                                       residuals,                                       step,                                       0)) {      LOG(ERROR) << "Unable to dump trust region problem."                 << " Filename base: " << per_solve_options.dump_filename_base;    }  }  TrustRegionStrategy::Summary summary;  summary.residual_norm = linear_solver_summary.residual_norm;  summary.num_iterations = linear_solver_summary.num_iterations;  summary.termination_type = linear_solver_summary.termination_type;  return summary;}void LevenbergMarquardtStrategy::StepAccepted(double step_quality) {  CHECK_GT(step_quality, 0.0);  radius_ =      radius_ / std::max(1.0 / 3.0, 1.0 - pow(2.0 * step_quality - 1.0, 3));  radius_ = std::min(max_radius_, radius_);  decrease_factor_ = 2.0;  reuse_diagonal_ = false;}void LevenbergMarquardtStrategy::StepRejected(double /*step_quality*/) {  radius_ = radius_ / decrease_factor_;  decrease_factor_ *= 2.0;  reuse_diagonal_ = true;}double LevenbergMarquardtStrategy::Radius() const { return radius_; }}  // namespace ceres::internal
 |