123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/invert_psd_matrix.h"
- #include "ceres/internal/eigen.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- static constexpr bool kFullRank = true;
- static constexpr bool kRankDeficient = false;
- template <int kSize>
- typename EigenTypes<kSize, kSize>::Matrix RandomPSDMatrixWithEigenValues(
- const typename EigenTypes<kSize>::Vector& eigenvalues) {
- typename EigenTypes<kSize, kSize>::Matrix m(eigenvalues.rows(),
- eigenvalues.rows());
- m.setRandom();
- Eigen::SelfAdjointEigenSolver<typename EigenTypes<kSize, kSize>::Matrix> es(
- m);
- return es.eigenvectors() * eigenvalues.asDiagonal() *
- es.eigenvectors().transpose();
- }
- TEST(InvertPSDMatrix, Identity3x3) {
- const Matrix m = Matrix::Identity(3, 3);
- const Matrix inverse_m = InvertPSDMatrix<3>(kFullRank, m);
- EXPECT_NEAR((inverse_m - m).norm() / m.norm(),
- 0.0,
- std::numeric_limits<double>::epsilon());
- }
- TEST(InvertPSDMatrix, FullRank5x5) {
- EigenTypes<5>::Vector eigenvalues;
- eigenvalues.setRandom();
- eigenvalues = eigenvalues.array().abs().matrix();
- const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);
- const Matrix inverse_m = InvertPSDMatrix<5>(kFullRank, m);
- EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0,
- 0.0,
- 10 * std::numeric_limits<double>::epsilon());
- }
- TEST(InvertPSDMatrix, RankDeficient5x5) {
- EigenTypes<5>::Vector eigenvalues;
- eigenvalues.setRandom();
- eigenvalues = eigenvalues.array().abs().matrix();
- eigenvalues(3) = 0.0;
- const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);
- const Matrix inverse_m = InvertPSDMatrix<5>(kRankDeficient, m);
- Matrix pseudo_identity = Matrix::Identity(5, 5);
- pseudo_identity(3, 3) = 0.0;
- EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(),
- 0.0,
- 10 * std::numeric_limits<double>::epsilon());
- }
- TEST(InvertPSDMatrix, DynamicFullRank5x5) {
- EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5);
- eigenvalues.setRandom();
- eigenvalues = eigenvalues.array().abs().matrix();
- const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues);
- const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kFullRank, m);
- EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0,
- 0.0,
- 10 * std::numeric_limits<double>::epsilon());
- }
- TEST(InvertPSDMatrix, DynamicRankDeficient5x5) {
- EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5);
- eigenvalues.setRandom();
- eigenvalues = eigenvalues.array().abs().matrix();
- eigenvalues(3) = 0.0;
- const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues);
- const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kRankDeficient, m);
- Matrix pseudo_identity = Matrix::Identity(5, 5);
- pseudo_identity(3, 3) = 0.0;
- EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(),
- 0.0,
- 10 * std::numeric_limits<double>::epsilon());
- }
- } // namespace ceres::internal
|