1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_
- #define CERES_INTERNAL_INVERT_PSD_MATRIX_H_
- #include "Eigen/Dense"
- #include "ceres/internal/eigen.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- // Helper routine to compute the inverse or pseudo-inverse of a
- // symmetric positive semi-definite matrix.
- //
- // assume_full_rank controls whether a Cholesky factorization or an
- // Singular Value Decomposition is used to compute the inverse and the
- // pseudo-inverse respectively.
- //
- // The template parameter kSize can either be Eigen::Dynamic or a
- // positive integer equal to the number of rows of m.
- template <int kSize>
- typename EigenTypes<kSize, kSize>::Matrix InvertPSDMatrix(
- const bool assume_full_rank,
- const typename EigenTypes<kSize, kSize>::Matrix& m) {
- using MType = typename EigenTypes<kSize, kSize>::Matrix;
- const int size = m.rows();
- // If the matrix can be assumed to be full rank, then if it is small
- // (< 5) and fixed size, use Eigen's optimized inverse()
- // implementation.
- //
- // https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html#title3
- if (assume_full_rank) {
- if (kSize > 0 && kSize < 5) {
- return m.inverse();
- }
- return m.template selfadjointView<Eigen::Upper>().llt().solve(
- MType::Identity(size, size));
- }
- // For a thin SVD the number of columns of the matrix need to be dynamic.
- using SVDMType = typename EigenTypes<kSize, Eigen::Dynamic>::Matrix;
- Eigen::JacobiSVD<SVDMType> svd(m, Eigen::ComputeThinU | Eigen::ComputeThinV);
- return svd.solve(MType::Identity(size, size));
- }
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_
|